
Henry Chai & Matt Gormley

9/4/24

10-423/623: Generative AI
Lecture 3 – Learning LLMs
and Decoding

Front Matter

 Announcements:

 HW0 released 8/28, due 9/9 (next Monday) at 11:59 PM

 Two components: written and programming

 Separate assignments on Gradescope

 Unique policy specific to HW0: we will grant (almost)

any extension request

 Quiz 1 in-class on 9/11 (next Wednesday)

 Instructor OH start this week; see the OH calendar for

more details

9/4/24 2

Recall:
Scaled Dot-
Product
Attention

9/4/24 3

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑎4,1
𝑎4,2

𝑎4,3

𝑠4,1
𝑠4,2 𝑠4,3

𝑠4,4

𝑎4,4

𝒗𝑗 = 𝑾𝑣
𝑇𝒙𝑗

𝒌𝑗 = 𝑾𝑘
𝑇𝒙𝑗

𝒒𝑗 = 𝑾𝑞
𝑇𝒙𝑗

𝑠4,𝑗 =
𝒌𝑗

𝑇𝒒4

𝑑𝑘

𝑎4,𝑗 = softmax 𝑠4,𝑗

𝒙4
′ = ෍

𝑗=1

4

𝑎4,𝑗𝒗𝑗

Values

Keys

Queries

Scores

Attention
weights

attention

Scaled Dot-
Product
Attention:
Matrix Form

9/4/24 4

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣
𝑉 = 𝒗1, ⋯ , 𝒗𝑁 = 𝑾𝑣

𝑇 𝒙1, ⋯ , 𝒙𝑁

𝐾 = 𝒌1, ⋯ , 𝒌𝑁 = 𝑾𝑘
𝑇 𝒙1, ⋯ , 𝒙𝑁

𝑄 = 𝒒1, ⋯ , 𝒒𝑁 = 𝑾𝑞
𝑇 𝒙1, ⋯ , 𝒙𝑁

Scaled Dot-
Product
Attention:
Matrix Form

9/4/24 5

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣
𝑉 = 𝒗1, ⋯ , 𝒗𝑁

𝑇 = 𝒙1, ⋯ , 𝒙𝑁
𝑇𝑾𝑣

𝐾 = 𝒌1, ⋯ , 𝒌𝑁
𝑇 = 𝒙1, ⋯ , 𝒙𝑁

𝑇𝑾𝑘

𝑄 = 𝒒1, ⋯ , 𝒒𝑁
𝑇 = 𝒙1, ⋯ , 𝒙𝑁

𝑇𝑾𝑞

Scaled Dot-
Product
Attention:
Matrix Form

9/4/24 6

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞

Scaled Dot-
Product
Attention:
Matrix Form

9/4/24 7

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝐴 = softmax 𝑆

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞

Scaled Dot-
Product
Attention:
Matrix Form

9/4/24 8

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

𝑋′ = 𝐴𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞

Which
dimension is
the softmax
applied over:
row-wise or
column-wise?

9/4/24 9

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

𝑋′ = 𝐴𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞

Holy cow,
that’s a lot of
new arrows…
do we always
want/need all
of those?

9/4/24 10

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

𝑋′ = 𝐴𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞

Causal
Attention

9/4/24 11

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

• Suppose we’re training

our transformer to

predict the next token(s)

given the input…

• … then attending to

tokens that come after

the current token is

cheating!

𝐴 = softmax 𝑆

𝑋′ = 𝐴𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

Masking

9/4/24 12

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

Idea: we can effectively delete or “mask” some of these

arrows by selectively setting attention weights to 0

𝑋′ = 𝐴𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

Masking

9/4/24 13

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

Insight: if some

element in the input to

the softmax is -∞, then

the corresponding

output is 0!

exp −∞

σ𝑗 exp 𝑠𝑗
=

0

σ𝑗 exp 𝑠𝑗

Idea: we can effectively delete or “mask” some of these

arrows by selectively setting attention weights to 0

𝑋′ = 𝐴𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

Which of the
mask matrices
corresponds to
this set of
arrows?

9/4/24 14

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑋′ = softmax
𝑄𝐾𝑇

𝑑𝑘

+ 𝑀 𝑉

𝑀 =

0 0 0 0
−∞ 0 0 0
−∞ −∞ 0 0
−∞ −∞ −∞ 0

𝐴𝑚𝑎𝑠𝑘 = softmax 𝑆 + 𝑀

𝑀 =

0 −∞ −∞ −∞
0 0 −∞ −∞
0 0 0 −∞
0 0 0 0

𝑀 =

0 −∞ −∞ −∞
−∞ 0 −∞ −∞
−∞ −∞ 0 −∞
−∞ −∞ −∞ 0

A.

B.

C.

Idea: we can effectively delete or “mask” some of these

arrows by selectively setting attention weights to 0

Masked Scaled
Dot-Product
Attention:
Matrix Form

9/4/24 15

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑋′ = softmax
𝑄𝐾𝑇

𝑑𝑘

+ 𝑀 𝑉

𝐴𝑚𝑎𝑠𝑘 = softmax 𝑆 + 𝑀

Idea: we can effectively delete or “mask” some of these

arrows by selectively setting attention weights to 0

𝑀 =

0 −∞ −∞ −∞
0 0 −∞ −∞
0 0 0 −∞
0 0 0 0

Masked
Multi-headed
Attention:
Matrix Form

9/4/24 16

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑞
𝑖

𝑾𝑘
𝑖

𝑾𝑣
𝑖

multi-headed attention

𝒙1
′ 𝒙2

′ 𝒙3
′ 𝒙4

′

𝑋′ = concat
𝑖

softmax
𝑄 𝑖 𝐾 𝑖 𝑇

𝑑𝑘

+ 𝑀 𝑉 𝑖

𝑉 𝑖 = 𝑋𝑾𝑏
𝑖

𝐾 𝑖 = 𝑋𝑾𝑘
𝑖

𝑄 𝑖 = 𝑋𝑾𝑞
𝑖

where

Summary
thus Far

9/4/24 17

1. Language Modeling

 Key idea: condition on previous words to sample the next word

 To define the probability of the next word, we can…

 use conditional independence assumption (𝑛-grams)

 throw a neural network at it (RNN-LM or Transformer-LM)

2. (Module-based) AutoDiff

 A tool for computing gradients of a differentiable function,

𝑏 = 𝑓(𝑎)

 Key building block: modules with forward() and backward()

 Can define 𝑓 as code in forward() by chaining existing

modules together

 Can define 𝑓 as a computation graph

1. Language Modeling

 Key idea: condition on previous words to sample the next word

 To define the probability of the next word, we can…

 use conditional independence assumption (𝑛-grams)

 throw a neural network at it (RNN-LM or Transformer-LM)

2. (Module-based) AutoDiff

 A tool for computing gradients of a differentiable function,

𝑏 = 𝑓(𝑎)

 Key building block: modules with forward() and backward()

 Can define 𝑓 as code in forward() by chaining existing

modules together

 Can define 𝑓 as a computation graph

Summary
thus Far

9/4/24 18

How can we use this stuff…

…to learn one of these?

Stochastic
Gradient
Descent

 Input: training dataset 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, step size 𝛾

1. Randomly initialize the parameters of your neural LM 𝜽 0

and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 𝑖 , 𝑦 𝑖
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sample

using (module-based) AutoDiff: ∇𝐽 𝑖 𝜽 𝑡

c. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝐽 𝑖 𝜽 𝑡

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝜽 𝑡
9/4/24 19

Mini-batch
Stochastic
Gradient
Descent

 Input: training dataset 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, step size 𝛾,

and batch size 𝐵

1. Randomly initialize the parameters of your neural LM 𝜽 0

and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch

using (module-based) AutoDiff: ∇𝐽 𝐵 𝜽 𝑡

c. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝐽 𝐵 𝜽 𝑡

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝜽 𝑡
9/4/24 20

 How do we train an 𝑛-gram language model?

 Using training data! Simply count frequency of next words,

which maximizes the likelihood of the data under the

various categorial distributions in the model
Recall:
𝑛-gram
Language
Model
Training

9/4/24

Narwhals are big aquatic mammals that…

Who knows what narwhals are hiding?

Watch out, the narwhals are coming!

These narwhals are friendly!

Narwhals are a surprisingly large part of this lecture.

The narwhals are a punk rock band from…

Narwhals are big fans of machine learning

Narwhals are generated by AI.

𝒙𝒕 𝒑 𝒙𝒕 𝐧𝐚𝐫𝐰𝐡𝐚𝐥𝐬, 𝐚𝐫𝐞

big 2/8

hiding 1/8

coming 1/8

friendly 1/8

a 2/8

generated 1/8
21

 How do we train an 𝑛-gram language model?

 Using training data! Simply count frequency of next words,

which maximizes the likelihood of the data under the

various categorial distributions in the modelWe can use the
same principle
of MLE to
optimize the
parameters of
our Neural LMs!

9/4/24

Narwhals are big aquatic mammals that…

Who knows what narwhals are hiding?

Watch out, the narwhals are coming!

These narwhals are friendly!

Narwhals are a surprisingly large part of this lecture.

The narwhals are a punk rock band from…

Narwhals are big fans of machine learning

Narwhals are generated by AI.

𝒙𝒕 𝒑 𝒙𝒕 𝐧𝐚𝐫𝐰𝐡𝐚𝐥𝐬, 𝐚𝐫𝐞

big 2/8

hiding 1/8

coming 1/8

friendly 1/8

a 2/8

generated 1/8
22

Recurrent
Neural
Networks

9/4/24

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑥1

ℎ1

𝑦1

𝑥2

ℎ2

𝑦2

𝑥3

ℎ3

𝑦3

𝑥4

ℎ4

𝑦4

𝑥5

ℎ5

𝑦5

ℎ0

Inputs

Hidden
Units

Outputs

23

𝑦𝑡 = 𝜓 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Recurrent
Neural
Networks for
Part of Speech
Tagging

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden
Units

Outputs, 𝒚

24

𝑥2

A V N P… A V N P… A V N P… A V N P… A V N P…

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙

Verb PrepositionNoun

AI

NounVerb

Recurrent
Neural
Networks for
Part of Speech
Tagging

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden
Units

Outputs, 𝒚

𝑥2

A V N …

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙 AI

A V N P… A V N P… A V N P…
0 0 1 0 0 1 0 0 0 1 0 0

A V N P…
0 0 0 1

A V N P…
0 0 1 0

0.1 0.2 0.5 …

A V N …

0.1 0.7 0.1 …

A V N …

0.4 0.4 0.1 …

A V N …

0.2 0.1 0.1 …

A V N …

0.3 0.1 0.5 …

25

 Intuition: we want the true label to have high

probability under the output distribution

 Idea: use 𝒚∗ to index into the desired element of 𝒚

Recurrent
Neural
Networks for
Part of Speech
Tagging

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden
Units

Outputs, 𝒚

𝑥2

A V N …

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙 AI

A V N P… A V N P… A V N P…
0 0 1 0 0 1 0 0 0 1 0 0

A V N P…
0 0 0 1

A V N P…
0 0 1 0

0.1 0.2 0.5 …

A V N …

0.1 0.7 0.1 …

A V N …

0.4 0.4 0.1 …

A V N …

0.2 0.1 0.1 …

A V N …

0.3 0.1 0.5 …

26

Recurrent
Neural
Networks for
Part of Speech
Tagging

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden
Units

Outputs, 𝒚

𝑥2

A V N …

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙 AI

A V N P… A V N P… A V N P…
0 0 1 0 0 1 0 0 0 1 0 0

A V N P…
0 0 0 1

A V N P…
0 0 1 0

0.1 0.2 0.5 …

A V N …

0.1 0.7 0.1 …

A V N …

0.4 0.4 0.1 …

A V N …

0.2 0.1 0.1 …

A V N …

0.3 0.1 0.5 …

maximize ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

27

Recurrent
Neural
Networks for
Part of Speech
Tagging

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden
Units

Outputs, 𝒚

𝑥2

A V N …

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙 AI

A V N P… A V N P… A V N P…
0 0 1 0 0 1 0 0 0 1 0 0

A V N P…
0 0 0 1

A V N P…
0 0 1 0

0.1 0.2 0.5 …

A V N …

0.1 0.7 0.1 …

A V N …

0.4 0.4 0.1 …

A V N …

0.2 0.1 0.1 …

A V N …

0.3 0.1 0.5 …

minimize ℓ𝑡 = − ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

28

Recurrent
Neural
Networks for
Part of Speech
Tagging

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden
Units

Outputs, 𝒚

𝑥2

A V N …

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙 AI

A V N P… A V N P… A V N P…
0 0 1 0 0 1 0 0 0 1 0 0

A V N P…
0 0 0 1

A V N P…
0 0 1 0

0.1 0.2 0.5 …

A V N …

0.1 0.7 0.1 …

A V N …

0.4 0.4 0.1 …

A V N …

0.2 0.1 0.1 …

A V N …

0.3 0.1 0.5 …

minimize 𝐽 = ෍

𝑡=1

𝑇

ℓ𝑡 = ෍

𝑡=1

𝑇

− ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

29

Recurrent
Neural
Network
Language
Models:
Loss

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden
Units

Outputs?

𝑥2are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels?

Inputs, 𝒙 AI

minimize 𝐽 = ෍

𝑡=1

𝑇

ℓ𝑡 = ෍

𝑡=1

𝑇

− ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

30

Recurrent
Neural
Network
Language
Models:
Loss

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden
Units

𝑥2are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Inputs, 𝒙 AI

minimize 𝐽 = ෍

𝑡=1

𝑇

ℓ𝑡 = ෍

𝑡=1

𝑇

− ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

Outputs, 𝒚

Labels, 𝒚∗ are generated by AI ???
31

Recurrent
Neural
Network
Language
Models:
Loss

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden
Units

𝑥2are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Inputs, 𝒙 AI

minimize 𝐽 = ෍

𝑡=1

𝑇

ℓ𝑡 = ෍

𝑡=1

𝑇

− ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

Outputs, 𝒚

Labels, 𝒚∗ are generated by AI EOS
32

Recurrent
Neural
Network
Language
Models:
Loss

9/4/24

ℎ2 ℎ3 ℎ4 ℎ5 ℎ6

𝑥2are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

AI

minimize 𝐽 = ෍

𝑡=1

𝑇

ℓ𝑡 = ෍

𝑡=1

𝑇

− ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

are generated by AI EOS

ℎ1ℎ0

SOS

Narwhals
33

Recurrent
Neural
Network
Language
Models:
Training

 Each training data point is a sequence 𝒙(𝑖) = 𝒙1
(𝑖)

, … , 𝒙𝑇𝑖

(𝑖)

 The objective function is the log-likelihood of a mini-batch:

𝐽 𝐵 𝜽 = log ෑ

𝑏=1

𝐵

𝑝𝜽(𝒙 𝑏) = ෍

𝑏=1

𝐵

log 𝑝𝜽(𝒙 𝑏)

(assuming i.i.d. sequences) where

log 𝑝𝜽(𝒙 𝑏) ≔ log 𝑝𝜽 𝒙1
𝑏

𝒉1 + ⋯ + log 𝑝𝜽 𝒙𝑇𝑏

𝑏
𝒉𝑇𝑏

log 𝑝𝜽(𝒙 𝑏) ≔ 𝑙1 + ⋯ + 𝑙𝑇𝑏

9/4/24 34

Recurrent
Neural
Network
Language
Models:
Training

9/4/24

ℎ2 ℎ3 ℎ4

𝑥2are generated EOSNarwhals

ℎ1ℎ0

SOS

ℓ2 ℓ3 ℓ4ℓ1

35

𝐽

Transformer Layer

Transformer
Language
Models:
Training

9/4/24

𝑥2are generated EOSNarwhalsSOS

ℓ2 ℓ3 ℓ4ℓ1

36

𝐽Key Takeaway: Training a transformer

LM is equivalent to training an RNN LM:

we use the same loss function and

optimization algorithms, just with a

different (differentiable) computation

graph in the middle

Transformer Layer

Are we really
passing in
“words” to this
transformer?

9/4/24

𝑥2are generated EOSNarwhalsSOS

ℓ2 ℓ3 ℓ4ℓ1

37

𝐽

 How can we break a sequence of text into individual units?

 Example: “Henry is giving a lecture on transformers”

 Word-based tokenization:

[“henry”, “is”, ”giving” “a”, “lecture”, “on”, “transformers”]

 Can have difficulty trading off between vocabulary

size and computational tractability

 Similar words e.g., “transformers” and “transformer”

can get mapped to completely disparate

representations

 Typos will typically be out-of-vocabulary (OOV)

Tokenization

9/4/24 38

Tokenization

9/4/24 39

 How can we break a sequence of text into individual units?

 Example: “Henry is givin’ a lectrue on transformers”

 Word-based tokenization:

[“henry”, “is”, ???, “a”, ???, “on”, “transformers”]

 Can have difficulty trading off between vocabulary

size and computational tractability

 Similar words e.g., “transformers” and “transformer”

can get mapped to completely disparate

representations

 Typos will typically be out-of-vocabulary (OOV)

Tokenization

9/4/24 40

 How can we break a sequence of text into individual units?

 Example: “Henry is givin’ a lectrue on transformers”

 Character-based tokenization:

[“h”, “e”, “n”, “r”, “y”, “i”, “s”, “g”, “i”, “v”, “i”, “n”, “ ’ ”, …]

 Much smaller vocabularies but a lot of semantic

meaning is lost…

 Sequences will be much longer than word-based

tokenization, potentially causing computational issues

 Can do well on logographic languages e.g., Kanji 漢字

Tokenization

9/4/24 41

 How can we break a sequence of text into individual units?

 Example: “Henry is givin’ a lectrue on transformers”

 Subword tokenization:

[“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lect”, “#u”, “##re”, “on”,

“transform”, “##ers”]

 Split long or rare words into smaller, semantically

meaningful components or subwords

 No out-of-vocabulary words – any non-subword

token can be constructed from other subwords

(all individual characters are subwords)

Okay, but these
are still strings:
how do I
convert these
into things my
transformer
can work with?

9/4/24 42

 How can we break a sequence of text into individual units?

 Example: “Henry is givin’ a lectrue on transformers”

 Subword tokenization:

[“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lect”, “#u”, “##re”, “on”,

“transform”, “##ers”]

 Split long or rare words into smaller, semantically

meaningful components or subwords

 No out-of-vocabulary words – any non-subword token

can be constructed from other subwords (all

individual characters are subwords)

Embeddings

9/4/24 43

 Given a vocabulary 𝑉 with 𝑉 tokens:

1. Map each token to a (non-negative) integer

2. Define a 𝑉 × 𝑑𝑒 lookup table, where each row

is a dense, numerical vector of length 𝑑𝑒

3. The row corresponding to each token’s integer

assignment is that token’s embedding

Are we really
passing in
“words” to this
transformer?

9/4/24 44are generated EOSNarwhalsSOS

Transformer Layer

ℓ2 ℓ3 ℓ4ℓ1

𝐽

Transformer Layer

Are we really
passing in
“words” to this
transformer?

NO

9/4/24 generat #edNarwhalSOS

ℓ2 ℓ3 ℓ4ℓ1

45

𝐽

#s EOS

50 7871 11 12812

are

ℓ5 ℓ6

2.1 4.3 7.1 3.2 1.1 0.7 0.1 0.5 1.8 2.2 8.0 5.5 3.8 3.8 1.0 7.6 6.5 5.4

Recall:
Transformer
Computational
Complexity

46

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

…

Important!

• RNN computation
graph grows linearly
with the number of
input tokens

• Transformer LM
computation graph
grows quadratically
with the number of
input tokens

• However, this
computation (and
therefore, the training
of transformer LMs) is
highly parallelizable

9/4/24

Parallelizing
Transformer LM
Computation

 Scaled dot-product attention can be easily parallelized
because the attention scores at one timestep do not
depend on other timesteps.

 In multi-headed attention, each head is also independent
of the other heads, which permits yet more parallelism.

 The core computation in attention is matrix multiplication,
and GPUs/TPUs make this very fast.

 Model parallelism: for large models, we can divide the
model over multiple GPUs/machines.

 Key-value caching: keys and values are re-used over many
timesteps so we can cache them for faster access

 Batching: rather than process one sequence at a time,
transformers take in a batch; the computation is identical
for each sequence (if they’re of the same length)

9/4/24 47

Parallelizing
Transformer LM
Computation

 Scaled dot-product attention can be easily parallelized
because the attention scores at one timestep do not
depend on other timesteps.

 In multi-headed attention, each head is also independent
of the other heads, which permits yet more parallelism.

 The core computation in attention is matrix multiplication,
and GPUs/TPUs make this very fast.

 Model parallelism: for large models, we can divide the
model over multiple GPUs/machines.

 Key-value caching: keys and values are re-used over many
timesteps so we can cache them for faster access

 Batching: rather than process one sequence at a time,
transformers take in a batch; the computation is identical
for each sequence (if they’re of the same length)

9/4/24 48

Batching:
Padding &
Truncation

𝒙1
(𝑖)

𝒙𝟐
(𝑖)

𝒙𝟑
(𝑖)

𝒙𝟒
(𝑖)

𝒙𝟓
(𝑖)

𝒙𝟔
(𝑖)

𝒙𝟕
(𝑖)

𝒙𝟖
(𝑖)

𝒙𝟗
(𝑖)

𝒙1𝟎
(𝑖)

Narwhals are generated by AI

Watch out , the narwhals are coming !

How many sequences contain “ narwhals are ” ?

Narwhals are way cooler than axolotls

Of the large aquatic mammals , narwhals are the best

Who knows what the narwhals are hiding ?

9/4/24 49

 Given a block size or maximum length, 𝐿 (typically a power of 2):

 Truncate sequences longer than 𝐿 by deleting excess tokens

 Pad sequences shorter than 𝐿 by adding PAD tokens

Batching:
Padding &
Truncation

9/4/24 50

 Given a block size or maximum length, 𝐿 (typically a power of 2):

 Truncate sequences longer than 𝐿 by deleting excess tokens

 Pad sequences shorter than 𝐿 by adding PAD tokens

𝒙1
(𝑖)

𝒙𝟐
(𝑖)

𝒙𝟑
(𝑖)

𝒙𝟒
(𝑖)

𝒙𝟓
(𝑖)

𝒙𝟔
(𝑖)

𝒙𝟕
(𝑖)

𝒙𝟖
(𝑖)

Narwhals are generated by AI

Watch out , the narwhals are coming !

How many sequences contain “ narwhals are ”

Narwhals are way cooler than axolotls

Of the large aquatic mammals , narwhals are

Who knows what the narwhals are hiding ?

Batching:
Padding &
Truncation

9/4/24 51

 Given a block size or maximum length, 𝐿 (typically a power of 2):

 Truncate sequences longer than 𝐿 by deleting excess tokens

 Pad sequences shorter than 𝐿 by adding PAD tokens

𝒙1
(𝑖)

𝒙𝟐
(𝑖)

𝒙𝟑
(𝑖)

𝒙𝟒
(𝑖)

𝒙𝟓
(𝑖)

𝒙𝟔
(𝑖)

𝒙𝟕
(𝑖)

𝒙𝟖
(𝑖)

Narwhals are generated by AI PAD PAD PAD

Watch out , the narwhals are coming !

How many sequences contain “ narwhals are ”

Narwhals are way cooler than axolotls PAD PAD

Of the large aquatic mammals , narwhals are

Who knows what the narwhals are hiding ?

 How do we generate new sequences using an RNN

language model?

 Exactly the same way we did for an 𝑛-gram language

model, by sampling from some learned probability

distributions over next words!

Recall:
Language
Model
Generation

9/4/24

Narwhals

ℎ1

are

ℎ2

way

ℎ3

cooler

ℎ4

than

ℎ5ℎ0

Inputs

Hidden
Units

Outputs

52

 How do we generate new sequences using a transformer

language model?

 Exactly the same way we did for an RNN language

model, by sampling from some learned probability

distributions over next words!

Recall:
Language
Model
Generation

9/4/24

Narwhals are way cooler thanInputs

Outputs

53

Transformer Layer

 How do we generate new sequences using a transformer

language model?

 Exactly the same way we did for an RNN language

model, by sampling from some learned probability

distributions over next words!
Is this the
only thing we
could do?

9/4/24

Narwhals are way cooler thanInputs

Outputs

54

Transformer Layer

Background:
Greedy Search

55

Start
State

End
States

2

4
3
1

7

3
3

5

4

1
2
2

3
5
6
4

7

8
9

8

• Goal: find the lowest (total) weight path from the Start State

to any End State • Greedy Search:

• At each node, select

the edge with

lowest weight

• Heuristic: does not

necessarily find the

lowest weight path

9/4/24

Background:
Greedy Search

56

Start
State

End
States

2

4
3
1

7

3
3

5

4

1
2
2

3
5
6
4

7

8
9

8

• Greedy Search:

• At each node, select

the edge with

lowest weight

• Heuristic: does not

necessarily find the

lowest weight path

• Goal: find the lowest (total) weight path from the Start State

to any End State

9

9
1
9

9/4/24

Background:
Greedy Search

57

Start
State

End
States

2

4
3
1

7

3
3

5

4

1
2
2

3

5
6
4

7

8
9

8

• Goal: find the lowest (total) weight path from the Start State

to any End State

9

9
1
9

7

1
3
5

2
1
2
2

5

3
1
5

• Greedy Search:

• At each node, select

the edge with

lowest weight

• Heuristic: does not

necessarily find the

lowest weight path

• Computation time is

linear in max path

length

9/4/24

• Goal: find the highest probability sequence of tokens

• Nodes are tokens and weights are (negative) log probabilities

• At each node, select
the edge with
lowest negative log
probability

• Heuristic: does not
necessarily find the
highest probability
output

• Computation time
is linear in the
maximum path
length

Greedy
Decoding for
Language
Models

58

T

Start
State

End
States

A

E

R

2

4
3
1

I

A

Y

7

3
3

5

C

N

D

M

4

1
2
2

S

K

Q

3

5
6
4

F

D

C

I

7

8
9

8

Y

E

S

9

9
1
9

C

G

R

N

E

7

1
3
5

C

N

Q

T

2
1
2
2

E

S

H

A

5

3
1
5

O

9/4/24

• Goal: find the highest probability sequence of tokens

• Nodes are tokens and weights are (negative) log probabilities

• At each node,
sample an edge
with probability
proportional to the
negative exp’ed
weights

• Exact method of
sampling

• Computation time
is linear in the
maximum path
length

Ancestral
Sampling for
Language
Models

59

T

Start
State

End
States

A

E

R

2

4
3
1

I

A

Y

7

3
3

5

C

N

D

M

4

1
2
2

S

K

Q

3

5
6
4

F

D

C

I

7

8
9

8

Y

E

S

9

9
1
9

C

G

R

N

E

7

1
3
5

C

N

Q

T

2
1
2
2

E

S

H

A

5

3
1
5

O

9/4/24

	Slide 1: 10-423/623: Generative AI Lecture 3 – Learning LLMs and Decoding
	Slide 2: Front Matter
	Slide 3: Recall: Scaled Dot-Product Attention
	Slide 4: Scaled Dot-Product Attention: Matrix Form
	Slide 5: Scaled Dot-Product Attention: Matrix Form
	Slide 6: Scaled Dot-Product Attention: Matrix Form
	Slide 7: Scaled Dot-Product Attention: Matrix Form
	Slide 8: Scaled Dot-Product Attention: Matrix Form
	Slide 9: Which dimension is the softmax applied over: row-wise or column-wise?
	Slide 10: Holy cow, that’s a lot of new arrows… do we always want/need all of those?
	Slide 11: Causal Attention
	Slide 12: Masking
	Slide 13: Masking
	Slide 14: Which of the mask matrices corresponds to this set of arrows?
	Slide 15: Masked Scaled Dot-Product Attention: Matrix Form
	Slide 16: Masked Multi-headed Attention: Matrix Form
	Slide 17: Summary thus Far
	Slide 18: Summary thus Far
	Slide 19: Stochastic Gradient Descent
	Slide 20: Mini-batch Stochastic Gradient Descent
	Slide 21: Recall: n-gram Language Model Training
	Slide 22: We can use the same principle of MLE to optimize the parameters of our Neural LMs!
	Slide 23: Recurrent Neural Networks
	Slide 24: Recurrent Neural Networks for Part of Speech Tagging
	Slide 25: Recurrent Neural Networks for Part of Speech Tagging
	Slide 26: Recurrent Neural Networks for Part of Speech Tagging
	Slide 27: Recurrent Neural Networks for Part of Speech Tagging
	Slide 28: Recurrent Neural Networks for Part of Speech Tagging
	Slide 29: Recurrent Neural Networks for Part of Speech Tagging
	Slide 30: Recurrent Neural Network Language Models: Loss
	Slide 31: Recurrent Neural Network Language Models: Loss
	Slide 32: Recurrent Neural Network Language Models: Loss
	Slide 33: Recurrent Neural Network Language Models: Loss
	Slide 34: Recurrent Neural Network Language Models: Training
	Slide 35: Recurrent Neural Network Language Models: Training
	Slide 36: Transformer Language Models: Training
	Slide 37: Are we really passing in “words” to this transformer?
	Slide 38: Tokenization
	Slide 39: Tokenization
	Slide 40: Tokenization
	Slide 41: Tokenization
	Slide 42: Okay, but these are still strings: how do I convert these into things my transformer can work with?
	Slide 43: Embeddings
	Slide 44: Are we really passing in “words” to this transformer?
	Slide 45: Are we really passing in “words” to this transformer? NO
	Slide 46: Recall: Transformer Computational Complexity
	Slide 47: Parallelizing Transformer LM Computation
	Slide 48: Parallelizing Transformer LM Computation
	Slide 49: Batching: Padding & Truncation
	Slide 50: Batching: Padding & Truncation
	Slide 51: Batching: Padding & Truncation
	Slide 52: Recall: Language Model Generation
	Slide 53: Recall: Language Model Generation
	Slide 54: Is this the only thing we could do?
	Slide 55: Background: Greedy Search
	Slide 56: Background: Greedy Search
	Slide 57: Background: Greedy Search
	Slide 58: Greedy Decoding for Language Models
	Slide 59: Ancestral Sampling for Language Models

