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10-423/623: Generative AI 
Lecture 3 – Learning LLMs 
and Decoding



Front Matter

 Announcements: 

 HW0 released 8/28, due 9/9 (next Monday) at 11:59 PM 

 Two components: written and programming 

 Separate assignments on Gradescope

 Unique policy specific to HW0: we will grant (almost) 

any extension request

 Quiz 1 in-class on 9/11 (next Wednesday) 

 Instructor OH start this week; see the OH calendar for 

more details
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Recall: 
Scaled Dot-
Product 
Attention
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑎4,1
𝑎4,2

𝑎4,3

𝑠4,1
𝑠4,2 𝑠4,3

𝑠4,4

𝑎4,4

𝒗𝑗 = 𝑾𝑣
𝑇𝒙𝑗

𝒌𝑗 = 𝑾𝑘
𝑇𝒙𝑗

𝒒𝑗 = 𝑾𝑞
𝑇𝒙𝑗

𝑠4,𝑗 =
𝒌𝑗

𝑇𝒒4

𝑑𝑘

𝑎4,𝑗 = softmax 𝑠4,𝑗

𝒙4
′ = ෍

𝑗=1

4

𝑎4,𝑗𝒗𝑗

Values

Keys

Queries

Scores

Attention 
weights

attention



Scaled Dot-
Product 
Attention: 
Matrix Form
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣
𝑉 = 𝒗1, ⋯ , 𝒗𝑁 = 𝑾𝑣

𝑇 𝒙1, ⋯ , 𝒙𝑁

𝐾 = 𝒌1, ⋯ , 𝒌𝑁 = 𝑾𝑘
𝑇 𝒙1, ⋯ , 𝒙𝑁

𝑄 = 𝒒1, ⋯ , 𝒒𝑁 = 𝑾𝑞
𝑇 𝒙1, ⋯ , 𝒙𝑁



Scaled Dot-
Product 
Attention: 
Matrix Form
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣
𝑉 = 𝒗1, ⋯ , 𝒗𝑁

𝑇 = 𝒙1, ⋯ , 𝒙𝑁
𝑇𝑾𝑣

𝐾 = 𝒌1, ⋯ , 𝒌𝑁
𝑇 = 𝒙1, ⋯ , 𝒙𝑁

𝑇𝑾𝑘

𝑄 = 𝒒1, ⋯ , 𝒒𝑁
𝑇 = 𝒙1, ⋯ , 𝒙𝑁

𝑇𝑾𝑞



Scaled Dot-
Product 
Attention: 
Matrix Form
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞



Scaled Dot-
Product 
Attention: 
Matrix Form
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝐴 = softmax 𝑆

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞



Scaled Dot-
Product 
Attention: 
Matrix Form
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

𝑋′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞



Which 
dimension is 
the softmax 
applied over: 
row-wise or 
column-wise?
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

𝑋′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞



Holy cow, 
that’s a lot of 
new arrows… 
do we always 
want/need all 
of those?
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

𝑋′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞



Causal 
Attention
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

• Suppose we’re training 

our transformer to 

predict the next token(s) 

given the input…

• … then attending to 

tokens that come after 

the current token is 

cheating! 

𝐴 = softmax 𝑆

𝑋′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉



Masking
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

Idea: we can effectively delete or “mask” some of these 

arrows by selectively setting attention weights to 0 

𝑋′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉



Masking
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

Insight: if some 

element in the input to 

the softmax is -∞, then 

the corresponding 

output is 0!

exp −∞

σ𝑗 exp 𝑠𝑗
=

0

σ𝑗 exp 𝑠𝑗

Idea: we can effectively delete or “mask” some of these 

arrows by selectively setting attention weights to 0 

𝑋′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉



Which of the 
mask matrices 
corresponds to 
this set of 
arrows? 
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑋′ = softmax
𝑄𝐾𝑇

𝑑𝑘

+ 𝑀 𝑉

𝑀 =

0 0 0 0
−∞ 0 0 0
−∞ −∞ 0 0
−∞ −∞ −∞ 0

𝐴𝑚𝑎𝑠𝑘 = softmax 𝑆 + 𝑀

𝑀 =

0 −∞ −∞ −∞
0 0 −∞ −∞
0 0 0 −∞
0 0 0 0

𝑀 =

0 −∞ −∞ −∞
−∞ 0 −∞ −∞
−∞ −∞ 0 −∞
−∞ −∞ −∞ 0

A. 

B. 

C. 

Idea: we can effectively delete or “mask” some of these 

arrows by selectively setting attention weights to 0 



Masked Scaled 
Dot-Product 
Attention: 
Matrix Form
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑋′ = softmax
𝑄𝐾𝑇

𝑑𝑘

+ 𝑀 𝑉

𝐴𝑚𝑎𝑠𝑘 = softmax 𝑆 + 𝑀

Idea: we can effectively delete or “mask” some of these 

arrows by selectively setting attention weights to 0 

𝑀 =

0 −∞ −∞ −∞
0 0 −∞ −∞
0 0 0 −∞
0 0 0 0



Masked
Multi-headed 
Attention: 
Matrix Form
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𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑞
𝑖

𝑾𝑘
𝑖

𝑾𝑣
𝑖

multi-headed attention

𝒙1
′ 𝒙2

′ 𝒙3
′ 𝒙4

′

𝑋′ = concat
𝑖

softmax
𝑄 𝑖 𝐾 𝑖 𝑇

𝑑𝑘

+ 𝑀 𝑉 𝑖  

𝑉 𝑖 = 𝑋𝑾𝑏
𝑖

𝐾 𝑖 = 𝑋𝑾𝑘
𝑖

𝑄 𝑖 = 𝑋𝑾𝑞
𝑖

where



Summary 
thus Far
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1. Language Modeling

 Key idea: condition on previous words to sample the next word

 To define the probability of the next word, we can…

 use conditional independence assumption (𝑛-grams) 

 throw a neural network at it (RNN-LM or Transformer-LM)

2. (Module-based) AutoDiff

 A tool for computing gradients of a differentiable function, 

𝑏 = 𝑓(𝑎)

 Key building block: modules with forward() and backward()

 Can define 𝑓 as code in forward() by chaining existing 

modules together

 Can define 𝑓 as a computation graph



1. Language Modeling

 Key idea: condition on previous words to sample the next word

 To define the probability of the next word, we can…

 use conditional independence assumption (𝑛-grams) 

 throw a neural network at it (RNN-LM or Transformer-LM)

2. (Module-based) AutoDiff

 A tool for computing gradients of a differentiable function, 

𝑏 = 𝑓(𝑎)

 Key building block: modules with forward() and backward()

 Can define 𝑓 as code in forward() by chaining existing 

modules together

 Can define 𝑓 as a computation graph

Summary 
thus Far
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How can we use this stuff…

…to learn one of these?



Stochastic 
Gradient 
Descent

 Input: training dataset 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, step size 𝛾

1. Randomly initialize the parameters of your neural LM 𝜽 0  

and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 𝑖 , 𝑦 𝑖
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sample 

using (module-based) AutoDiff: ∇𝐽 𝑖 𝜽 𝑡

c. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝐽 𝑖 𝜽 𝑡

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡
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Mini-batch
Stochastic 
Gradient 
Descent

 Input: training dataset 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, step size 𝛾, 

and batch size 𝐵

1. Randomly initialize the parameters of your neural LM 𝜽 0  

and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch

using (module-based) AutoDiff: ∇𝐽 𝐵 𝜽 𝑡

c. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝐽 𝐵 𝜽 𝑡

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡
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 How do we train an 𝑛-gram language model?

 Using training data! Simply count frequency of next words, 

which maximizes the likelihood of the data under the 

various categorial distributions in the model
Recall:
𝑛-gram
Language 
Model
Training

9/4/24

Narwhals are big aquatic mammals that…

Who knows what narwhals are hiding?

Watch out, the narwhals are coming!

These narwhals are friendly!

Narwhals are a surprisingly large part of this lecture.

The narwhals are a punk rock band from…

Narwhals are big fans of machine learning

Narwhals are generated by AI.

𝒙𝒕 𝒑 𝒙𝒕 𝐧𝐚𝐫𝐰𝐡𝐚𝐥𝐬, 𝐚𝐫𝐞

big 2/8

hiding 1/8

coming 1/8

friendly 1/8

a 2/8

generated 1/8
21



 How do we train an 𝑛-gram language model?

 Using training data! Simply count frequency of next words, 

which maximizes the likelihood of the data under the 

various categorial distributions in the modelWe can use the 
same principle 
of MLE to 
optimize the 
parameters of 
our Neural LMs! 

9/4/24

Narwhals are big aquatic mammals that…

Who knows what narwhals are hiding?

Watch out, the narwhals are coming!

These narwhals are friendly!

Narwhals are a surprisingly large part of this lecture.

The narwhals are a punk rock band from…

Narwhals are big fans of machine learning

Narwhals are generated by AI.

𝒙𝒕 𝒑 𝒙𝒕 𝐧𝐚𝐫𝐰𝐡𝐚𝐥𝐬, 𝐚𝐫𝐞

big 2/8

hiding 1/8

coming 1/8

friendly 1/8

a 2/8

generated 1/8
22



Recurrent 
Neural 
Networks

9/4/24

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑥1

ℎ1

𝑦1

𝑥2

ℎ2

𝑦2

𝑥3

ℎ3

𝑦3

𝑥4

ℎ4

𝑦4

𝑥5

ℎ5

𝑦5

ℎ0

Inputs

Hidden 
Units

Outputs

23

𝑦𝑡 = 𝜓 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦



Recurrent 
Neural 
Networks for 
Part of Speech 
Tagging

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden 
Units

Outputs, 𝒚

24

𝑥2

A V N P… A V N P… A V N P… A V N P… A V N P…

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙

Verb PrepositionNoun

AI

NounVerb



Recurrent 
Neural 
Networks for 
Part of Speech 
Tagging
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ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden 
Units

Outputs, 𝒚

𝑥2

A V N …

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙 AI

A V N P… A V N P… A V N P…
0 0 1 0 0 1 0 0 0 1 0 0

A V N P…
0 0 0 1

A V N P…
0 0 1 0

0.1 0.2 0.5 …

A V N …

0.1 0.7 0.1 …

A V N …

0.4 0.4 0.1 …

A V N …

0.2 0.1 0.1 …

A V N …

0.3 0.1 0.5 …

25



 Intuition: we want the true label to have high 

probability under the output distribution

 Idea: use 𝒚∗ to index into the desired element of 𝒚

Recurrent 
Neural 
Networks for 
Part of Speech 
Tagging

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden 
Units

Outputs, 𝒚

𝑥2

A V N …

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙 AI

A V N P… A V N P… A V N P…
0 0 1 0 0 1 0 0 0 1 0 0

A V N P…
0 0 0 1

A V N P…
0 0 1 0

0.1 0.2 0.5 …

A V N …

0.1 0.7 0.1 …

A V N …

0.4 0.4 0.1 …

A V N …

0.2 0.1 0.1 …

A V N …

0.3 0.1 0.5 …

26



Recurrent 
Neural 
Networks for 
Part of Speech 
Tagging

9/4/24

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden 
Units

Outputs, 𝒚

𝑥2

A V N …

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙 AI

A V N P… A V N P… A V N P…
0 0 1 0 0 1 0 0 0 1 0 0

A V N P…
0 0 0 1

A V N P…
0 0 1 0

0.1 0.2 0.5 …

A V N …

0.1 0.7 0.1 …

A V N …

0.4 0.4 0.1 …

A V N …

0.2 0.1 0.1 …

A V N …

0.3 0.1 0.5 …

maximize ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

27



Recurrent 
Neural 
Networks for 
Part of Speech 
Tagging
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ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden 
Units

Outputs, 𝒚

𝑥2

A V N …

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙 AI

A V N P… A V N P… A V N P…
0 0 1 0 0 1 0 0 0 1 0 0

A V N P…
0 0 0 1

A V N P…
0 0 1 0

0.1 0.2 0.5 …

A V N …

0.1 0.7 0.1 …

A V N …

0.4 0.4 0.1 …

A V N …

0.2 0.1 0.1 …

A V N …

0.3 0.1 0.5 …

minimize ℓ𝑡 = − ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐
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ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden 
Units

Outputs, 𝒚

𝑥2

A V N …

are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels, 𝒚∗

Inputs, 𝒙 AI

A V N P… A V N P… A V N P…
0 0 1 0 0 1 0 0 0 1 0 0

A V N P…
0 0 0 1

A V N P…
0 0 1 0

0.1 0.2 0.5 …

A V N …

0.1 0.7 0.1 …

A V N …

0.4 0.4 0.1 …

A V N …

0.2 0.1 0.1 …

A V N …

0.3 0.1 0.5 …

minimize 𝐽 = ෍

𝑡=1

𝑇

ℓ𝑡 = ෍

𝑡=1

𝑇

− ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐
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ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden 
Units

Outputs?

𝑥2are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Labels?

Inputs, 𝒙 AI

minimize 𝐽 = ෍

𝑡=1

𝑇

ℓ𝑡 = ෍

𝑡=1

𝑇

− ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐
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ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden 
Units

𝑥2are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Inputs, 𝒙 AI

minimize 𝐽 = ෍

𝑡=1

𝑇

ℓ𝑡 = ෍

𝑡=1

𝑇

− ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

Outputs, 𝒚

Labels, 𝒚∗ are generated by AI ???
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ℎ1 ℎ2 ℎ3 ℎ4 ℎ5ℎ0
Hidden 
Units

𝑥2are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Inputs, 𝒙 AI

minimize 𝐽 = ෍

𝑡=1

𝑇

ℓ𝑡 = ෍

𝑡=1

𝑇

− ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

Outputs, 𝒚

Labels, 𝒚∗ are generated by AI EOS
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ℎ2 ℎ3 ℎ4 ℎ5 ℎ6

𝑥2are generated byNarwhals

ℎ𝑡 = 𝜙 𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ

𝑦𝑡 = softmax 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

AI

minimize 𝐽 = ෍

𝑡=1

𝑇

ℓ𝑡 = ෍

𝑡=1

𝑇

− ෍

𝑐=1

𝐶

𝒚𝑡
∗ 𝑐 log 𝒚𝑡 𝑐

are generated by AI EOS

ℎ1ℎ0

SOS

Narwhals
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Recurrent 
Neural 
Network
Language 
Models:
Training

 Each training data point is a sequence 𝒙(𝑖) = 𝒙1
(𝑖)

, … , 𝒙𝑇𝑖

(𝑖)

 The objective function is the log-likelihood of a mini-batch:

𝐽 𝐵 𝜽 = log ෑ

𝑏=1

𝐵

𝑝𝜽(𝒙 𝑏 ) = ෍

𝑏=1

𝐵

log 𝑝𝜽(𝒙 𝑏 )

(assuming i.i.d. sequences) where 

log 𝑝𝜽(𝒙 𝑏 ) ≔ log 𝑝𝜽 𝒙1
𝑏

𝒉1 + ⋯ + log 𝑝𝜽 𝒙𝑇𝑏

𝑏
𝒉𝑇𝑏

log 𝑝𝜽(𝒙 𝑏 ) ≔ 𝑙1 + ⋯ + 𝑙𝑇𝑏
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Recurrent 
Neural 
Network
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Models:
Training
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ℎ2 ℎ3 ℎ4

𝑥2are generated EOSNarwhals

ℎ1ℎ0

SOS

ℓ2 ℓ3 ℓ4ℓ1
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Transformer Layer

Transformer 
Language 
Models:
Training

9/4/24

𝑥2are generated EOSNarwhalsSOS

ℓ2 ℓ3 ℓ4ℓ1

36

𝐽Key Takeaway: Training a transformer 

LM is equivalent to training an RNN LM: 

we use the same loss function and 

optimization algorithms, just with a 

different (differentiable) computation 

graph in the middle



Transformer Layer

Are we really 
passing in 
“words” to this 
transformer? 

9/4/24

𝑥2are generated EOSNarwhalsSOS

ℓ2 ℓ3 ℓ4ℓ1

37
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 How can we break a sequence of text into individual units?

 Example: “Henry is giving a lecture on transformers”

 Word-based tokenization:

[“henry”, “is”, ”giving” “a”, “lecture”, “on”, “transformers”]

 Can have difficulty trading off between vocabulary 

size and computational tractability

 Similar words e.g., “transformers” and “transformer” 

can get mapped to completely disparate 

representations

 Typos will typically be out-of-vocabulary (OOV)

Tokenization

9/4/24 38



Tokenization
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 How can we break a sequence of text into individual units?

 Example: “Henry is givin’ a lectrue on transformers”

 Word-based tokenization:

[“henry”, “is”, ???, “a”, ???, “on”, “transformers”]

 Can have difficulty trading off between vocabulary 

size and computational tractability

 Similar words e.g., “transformers” and “transformer” 

can get mapped to completely disparate 

representations

 Typos will typically be out-of-vocabulary (OOV)



Tokenization
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 How can we break a sequence of text into individual units?

 Example: “Henry is givin’ a lectrue on transformers”

 Character-based tokenization:

[“h”, “e”, “n”, “r”, “y”, “i”, “s”, “g”, “i”, “v”, “i”, “n”, “ ’ ”, … ]

 Much smaller vocabularies but a lot of semantic 

meaning is lost…

 Sequences will be much longer than word-based 

tokenization, potentially causing computational issues

 Can do well on logographic languages e.g., Kanji 漢字



Tokenization
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 How can we break a sequence of text into individual units?

 Example: “Henry is givin’ a lectrue on transformers”

 Subword tokenization:

[“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lect”, “#u”, “##re”, “on”, 

“transform”, “##ers”]

 Split long or rare words into smaller, semantically 

meaningful components or subwords

 No out-of-vocabulary words – any non-subword 

token can be constructed from other subwords 

(all individual characters are subwords)



Okay, but these 
are still strings: 
how do I 
convert these 
into things my 
transformer 
can work with?
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 How can we break a sequence of text into individual units?

 Example: “Henry is givin’ a lectrue on transformers”

 Subword tokenization:

[“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lect”, “#u”, “##re”, “on”, 

“transform”, “##ers”]

 Split long or rare words into smaller, semantically 

meaningful components or subwords

 No out-of-vocabulary words – any non-subword token 

can be constructed from other subwords (all 

individual characters are subwords)



Embeddings
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 Given a vocabulary 𝑉 with 𝑉  tokens:

1. Map each token to a (non-negative) integer

2. Define a 𝑉  ×  𝑑𝑒  lookup table, where each row 

is a dense, numerical vector of length 𝑑𝑒

3. The row corresponding to each token’s integer 

assignment is that token’s embedding



Are we really 
passing in 
“words” to this 
transformer?

9/4/24 44are generated EOSNarwhalsSOS

Transformer Layer

ℓ2 ℓ3 ℓ4ℓ1

𝐽



Transformer Layer

Are we really 
passing in 
“words” to this 
transformer?

NO 

9/4/24 generat #edNarwhalSOS

ℓ2 ℓ3 ℓ4ℓ1
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𝐽

#s EOS

50 7871 11 12812

are

ℓ5 ℓ6

2.1 4.3 7.1 3.2 1.1 0.7 0.1 0.5 1.8 2.2 8.0 5.5 3.8 3.8 1.0 7.6 6.5 5.4



Recall: 
Transformer 
Computational 
Complexity

46

x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

…

Important!

• RNN computation 
graph grows linearly 
with the number of 
input tokens

• Transformer LM 
computation graph 
grows quadratically 
with the number of 
input tokens

• However, this 
computation (and 
therefore, the training 
of transformer LMs) is 
highly parallelizable 

9/4/24



Parallelizing 
Transformer LM 
Computation 

 Scaled dot-product attention can be easily parallelized 
because the attention scores at one timestep do not 
depend on other timesteps.

 In multi-headed attention, each head is also independent 
of the other heads, which permits yet more parallelism.

 The core computation in attention is matrix multiplication, 
and GPUs/TPUs make this very fast.

 Model parallelism: for large models, we can divide the 
model over multiple GPUs/machines.

 Key-value caching: keys and values are re-used over many 
timesteps so we can cache them for faster access

 Batching: rather than process one sequence at a time, 
transformers take in a batch; the computation is identical 
for each sequence (if they’re of the same length)

9/4/24 47



Parallelizing 
Transformer LM 
Computation 

 Scaled dot-product attention can be easily parallelized 
because the attention scores at one timestep do not 
depend on other timesteps.

 In multi-headed attention, each head is also independent 
of the other heads, which permits yet more parallelism.

 The core computation in attention is matrix multiplication, 
and GPUs/TPUs make this very fast.

 Model parallelism: for large models, we can divide the 
model over multiple GPUs/machines.

 Key-value caching: keys and values are re-used over many 
timesteps so we can cache them for faster access

 Batching: rather than process one sequence at a time, 
transformers take in a batch; the computation is identical 
for each sequence (if they’re of the same length)
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Batching: 
Padding & 
Truncation

𝒙1
(𝑖)

𝒙𝟐
(𝑖)

𝒙𝟑
(𝑖)

𝒙𝟒
(𝑖)

𝒙𝟓
(𝑖)

𝒙𝟔
(𝑖)

𝒙𝟕
(𝑖)

𝒙𝟖
(𝑖)

𝒙𝟗
(𝑖)

𝒙1𝟎
(𝑖)

Narwhals are generated by AI

Watch out , the narwhals are coming !

How many sequences contain “ narwhals are ” ?

Narwhals are way cooler than axolotls

Of the large aquatic mammals , narwhals are the best

Who knows what the narwhals are hiding ?
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 Given a block size or maximum length, 𝐿 (typically a power of 2):

 Truncate sequences longer than 𝐿 by deleting excess tokens

 Pad sequences shorter than 𝐿 by adding PAD tokens



Batching: 
Padding & 
Truncation

9/4/24 50

 Given a block size or maximum length, 𝐿 (typically a power of 2):

 Truncate sequences longer than 𝐿 by deleting excess tokens

 Pad sequences shorter than 𝐿 by adding PAD tokens

𝒙1
(𝑖)

𝒙𝟐
(𝑖)

𝒙𝟑
(𝑖)

𝒙𝟒
(𝑖)

𝒙𝟓
(𝑖)

𝒙𝟔
(𝑖)

𝒙𝟕
(𝑖)

𝒙𝟖
(𝑖)

Narwhals are generated by AI

Watch out , the narwhals are coming !

How many sequences contain “ narwhals are ”

Narwhals are way cooler than axolotls

Of the large aquatic mammals , narwhals are

Who knows what the narwhals are hiding ?



Batching: 
Padding & 
Truncation
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 Given a block size or maximum length, 𝐿 (typically a power of 2):

 Truncate sequences longer than 𝐿 by deleting excess tokens

 Pad sequences shorter than 𝐿 by adding PAD tokens

𝒙1
(𝑖)

𝒙𝟐
(𝑖)

𝒙𝟑
(𝑖)

𝒙𝟒
(𝑖)

𝒙𝟓
(𝑖)

𝒙𝟔
(𝑖)

𝒙𝟕
(𝑖)

𝒙𝟖
(𝑖)

Narwhals are generated by AI PAD PAD PAD

Watch out , the narwhals are coming !

How many sequences contain “ narwhals are ”

Narwhals are way cooler than axolotls PAD PAD

Of the large aquatic mammals , narwhals are

Who knows what the narwhals are hiding ?



 How do we generate new sequences using an RNN

language model? 

 Exactly the same way we did for an 𝑛-gram language 

model, by sampling from some learned probability 

distributions over next words!

Recall:
Language 
Model
Generation

9/4/24

Narwhals

ℎ1

are

ℎ2

way

ℎ3

cooler

ℎ4

than

ℎ5ℎ0

Inputs

Hidden 
Units

Outputs
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 How do we generate new sequences using a transformer 

language model?

 Exactly the same way we did for an RNN language 

model, by sampling from some learned probability 

distributions over next words!

Recall:
Language 
Model
Generation

9/4/24

Narwhals are way cooler thanInputs

Outputs

53

Transformer Layer



 How do we generate new sequences using a transformer 

language model?

 Exactly the same way we did for an RNN language 

model, by sampling from some learned probability 

distributions over next words!
Is this the 
only thing we 
could do?

9/4/24

Narwhals are way cooler thanInputs

Outputs

54

Transformer Layer



Background: 
Greedy Search

55

Start
State

End
States

2

4
3
1

7

3
3

5

4

1
2
2

3
5
6
4

7

8
9

8

• Goal: find the lowest (total) weight path from the Start State 

to any End State • Greedy Search:

• At each node, select 

the edge with 

lowest weight

• Heuristic: does not 

necessarily find the 

lowest weight path
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Background: 
Greedy Search

56
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• Greedy Search:

• At each node, select 

the edge with 

lowest weight

• Heuristic: does not 

necessarily find the 

lowest weight path

• Goal: find the lowest (total) weight path from the Start State 

to any End State
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Background: 
Greedy Search
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• Goal: find the lowest (total) weight path from the Start State 

to any End State
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9
1
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3
1
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• Greedy Search:

• At each node, select 

the edge with 

lowest weight

• Heuristic: does not 

necessarily find the 

lowest weight path

• Computation time is 

linear in max path 

length
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• Goal: find the highest probability sequence of tokens

• Nodes are tokens and weights are (negative) log probabilities

• At each node, select 
the edge with 
lowest negative log 
probability

• Heuristic: does not 
necessarily find the 
highest probability 
output

• Computation time 
is linear in the 
maximum path 
length

Greedy 
Decoding for 
Language 
Models

58
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• Goal: find the highest probability sequence of tokens

• Nodes are tokens and weights are (negative) log probabilities

• At each node, 
sample an edge 
with probability 
proportional to the 
negative exp’ed 
weights

• Exact method of 
sampling

• Computation time 
is linear in the 
maximum path 
length

Ancestral 
Sampling for 
Language 
Models

59
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