ML 10-423/10-623 Generative Al

Machine Learning Department

| School of Computer Science

MACHINE LEARNING ; T
EEEEEEEEEE Carnegie Mellon University

%

Pretraining vs. finetuning

+ Modern Transformers
(RoPE, GQA, Longformer)

+ CNNs

Matt Gormley & Henry Chai
Lecture 4
Sep. 9, 2024

Reminders

* Homework 0: PyTorch + Weights & Biases
— Out: Wed, Aug 28
— Due: Mon, Sep 9 at 11:59pm

— unique policy for this assignment: we will grant (essentially) any
and all extension requests

* Quiz 1: Wed, Sep 11
e Homework 1: Generative Models of Text

— Out: Mon, Sep 9
— Due: Mon, Sep 23 at 11:59pm

Two parts: and Recap SO Far

Deep Learning Language Modeling
* AutoDiff * key idea: condition on previous
— is a tool for computing %radients of a words to sample the next word
differentiable function, b = f(a) * to define the probability of the next
— the key building block is a module with a word...
forward() and backward() , :
: . : — ...n-gram LM uses collection of massive
— sometimes define f as code in forward() sok-sided dice
by chaining existing modules together — _ RNN-LM or Transformer-LM use 2
¢ Computatlon GraphS hueural network

— are another way to define f (more
conducive to slides)

— so far, we saw two (deep) computation * Learningan LM

graphs — n-gram LMs are easy to learn: just count
* 1) RNN-LM co-occurrences!
* 2)Transformer-LM — a RNN-LM / Transformer-LM is trained by
« (Transformer-LM was kind of complicated) optimizing an objective function with

SGD; compute gradients with AutoDiff

PRE-TRAINING VS. FINE-TUNING

The Start of Deep Learning

* The architectures of modern deep
learning have a long history:

— 1960s: Rosenblatt’s 3-layer multi-layer
perceptron, ReLU)

— 1970-80s: RNNs and CNNs
— 1990s: linearized self-attention
* The spark for deep learning came in

2006 thanks to pre-training (e.g.,
Hinton & Salakhutdinov, 2006)

Figure from Vargas et al. (2017)

Publications

16500

14500

12500

10500

8500

6500

683

2006

7743

2007

8136

2008

8706

2009

10930

9194
9853

2010 2011 2012

Year

12200

2013 2

15

069

15

16288

2015 2016

Deep Network Training

Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
% 15 -

1.0 - T | T

Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
% 15 -

1.0 - T | T

Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
% 15 -

1.0 - T | T

Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

10

1.

2.

ldea #3: Unsupervised
Pre-training

Idea #3: (Two Steps)
® Use our original idea, but pick a better starting point

® Train each level of the model in a greedy way

Unsupervised Pre-training
— Use unlabeled data

— Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task

11

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input!

12

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input!

This topology defines an
Auto-encoder.

13

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:

— X’ is the reconstruction of x
— Loss = || x - DECODER(ENCODER(x)) ||?

— Train with the same backpropagation algorithm for 2-layer
Neural Networks with x;, as both input and output.

DECODER: x’=h(W’z)

ENCODER: z = h(Wx)

Slide adapted from Raman Arora

14

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2.
Then fix its parameters.

nput”

Hidden Layer

— Train hidden layer n.
Then fix its parameters.

Input

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2. B
Then fix its parameters.

Hidden Layer

— Train hidden layer n.
Then fix its parameters.

_ ' y - <

16

The sol
Unsupervised

Unsupervised pre-
training
* Work bottom-up

Train hidden layer 1.
Then fix its parameters.

Train hidden layer 2.
Then fix its parameters.

Train hidden layer n.
Then fix its parameters.

ution:
pre-training

Hidden Layer
Hidden Layer

Hidden Layer

17

Unsupervised pre-
training
* Work bottom-up

Supervised fine-tuning
Backprop and update all -

The solution:
Unsupervised pre-training

Hidden Layer

Train hidden layer 1.
Then fix its parameters.

Train hidden layer 2. centoyer
Then fix its parameters.

Train hidden layern. weenwyer
Then fix its parameters.

parameters

18

Deep Network Training

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
% 15 -

1.0 - T | T

Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

20

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
- I
1.0 - | | | L
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

21

Transformer Language Model

)\

[The [bat] [made] [noise]

P AT

T p(wilh,) p(wa|h,) p(ws|h;) p(w,|h,)
>

Generative pre-training for a deep

language model:

* each training example is an
(unlabeled) sentence

* the objective function is the
likelihood of the observed
sentence

Practically, we can batch together
many such training examples to
make training more efficient

Table from

Training Data for LLMs

GPT-3 Training Data:
Quantity Weight in Epochs elapsed when
Dataset (tokens) training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

23

http://arxiv.org/abs/2005.14165

Training Data for LLMs

Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
Pile-CC g
ArXiv

The Pile:

* An open source dataset for
training language models

* Comprised of 22 smaller
datasets

* Favors high quality text

825 Gb=1.2 trillion tokens

PubMed Central

BC2
StackExchange
PMA
FreeLaw USPTO NIH [OpenWebText2 Wikipedia DM Math I

24

MODERN TRANSFORMER MODELS

Modern Tranformer Models

PaLM (Oct 2022)

540B parameters
closed source
Model:
* SwiGLU instead of ReLU, GELU, or Swish
* multi-query attention (MQA) instead of multi-headed attention
* rotary position embeddings
* shared input-output embeddings instead of separate parameter matrices
Training: Adafactor on 780 billion tokens

Llama-1 (Feb 2023)

collection of models of varying parameter sizes: 7B, 13B, 32B, 65B
semi-open source
Llama-13B outperforms GPT-3 on average
Model compared to GPT-3:

* RMSNorm on inputs instead of LayerNorm on outputs

* SwiGLU activation function instead of ReLU

* rotary position embeddings (RoPE) instead of absolute
Training: AdamW on 1.0 — 1.4 trillion tokens

Falcon (June - Nov 2023)

models of size 7B, 40B, 180B
first fully open source model, Apache 2.0
Model compared to Llama-1:
. (G(%A) instead of multi-headed attention (MHA) or grouped query attention
multi-query attention (MQA)
* rotary position embeddings (worked better than Alibi)
* GelUinstead of SwiGLU
Training: AdamW on up to 3.5 trillion tokens for 180B model, using z-loss for
stability and weight decay

Llama-2 (Aug 2023)

collection of models of varying parameter sizes: 7B, 13B, 70B.

introduced Llama 2-Chat, fine-tuned as a dialogue agent

Model compared to Llama-1:
+ grouped query attention (GQA) instead of multi-headed attention (MHA)
* context length of 4096 instead of 2048

Training{AdamWlon 2.0 trillion tokens

Mistral 7B (Oct 2023)

outperforms Llama-2 13B on average
introduced Mistral 7B — Instruct, fine-tuned as a dialogue agent
truly open source: Apache 2.0 license

Model compared to Llama-2

+ sliding window attention (with W=4096) and grouped-query attention
(GQA) instead of just GQA

+ context length of 8192 instead of 4096 (can generate sequences up to
length 32K)

* rolling buffer cache (grow the KV cache and the overwrite position i into
position i mod W)

variant Mixtral offers a mixture of experts (roughly 8 Mistral models)

In this section we’ll look at four
techniques:

1. key-value cache (KV cache)

2. rotary position embeddings (RoPE)
3. grouped query attention (GQA)

4. sliding window attention

Key-Value Cache

D/D///?g

softmax

x!
X4

4
- § :a4,jvj *

=

a, = softmax(sy)

At each timestep, we reuse all
previous keys and values (i.e.
we need to cache them)

But we can get rid of the

queries, similarity scores, and
attention weights (i.e. we can
let them fall out of the cache)

27

ROTARY POSITION EMBEDDINGS (ROPE)

Q

Rotary Position Embeddings (RoPE)

Why does this slide
have so many typos?

I’m really not sure. |
very meticulously type
up the latex for my
slides myself and think
carefully about all the
things | put in them.

RoPE attention:

fq(Xtvm) = R@ mWT t
fk(Xjam) = R@m

St.j = Jr(X;;

wrong

a; = softmax(s;), Vt

wrong

W wrong

Vi, twherem =t — jle wrong

where Wy, W, € RdmeaciXdk and the rotary matrix Re ,, € R% ¥4 is given by:

cosmb; —sinmb, 0 0

sinmf; cosmb; 0 0
0 0 cosmby —sinmbs

Re.m = 0 0 sinmfy cosmbs
0 0 0 0
0 0 0 0
The 0; parameters are fixed ahead of time and defined as belov
O = {0; = 1000072 {%,i e [1,2,...

0 0

0 0

0 0

0 0
cosmby, ;o —sinmbyg, 2

sinmbg, ;o cosmbyg, /o

wrong
yd/2]}

Q

Rotary Position Embeddings (RoPE)

Why does this slide
have so many typos?

I’m really not sure. |
very meticulously type
up the latex for my
slides myself and think
carefully about all the
things | put in them.

Rotary Position Embeddings (RoPE)

* Rotary position
embeddings are a
kind of relative
position embeddings

* Keyidea:

— break each d-
dimensional input

vector into d/2
vectors of length 2

— rotate each of the
d/2 vectors by an
amount scaled by m

— m s the absolute
position of the
query or the key

Figure from http://arxiv.org/abs/2104.09864

an v\m
(X1, X3) \”l& —
K_ X't X o
m .
d=2 4\

n i*’”’- oo 1 XI I I I‘EO..[l I_l_l
| coe 2 XZ N O [P R O =
.. 4 CEE - G
Position ---I:I:I:D | I I | I"'I | | I |

Embedding | T\TT] j_il]ﬂ_\ @XG
_——

Rotary Position Embeddings (RoPE)

Standard attention: RoPE attention:
_ T, - . T, :
szngjyvjm q; = Wi x;,V) =k =Wpx; V)

~

k; = Wl'x;,Vj - | §-= Ro,id; kj = Re,jk;
B N "R TEET S T N N

O
a; = softmax(s;),Vt -~ --- . softmax(s;), Vt

where Wy, W, € RémodetXdi Herein we use d = d, for brevity.

For some fixed absolute position m, the rotary matrix Reg ,, € R Xk jg given by:

—
cosmb; —sinmby 0 0
inmf; cosmby 0 0

0 0 cosmby —sinmby| ...
Re . = 0 0 sinmf, cosmby / ...

0 0 0 0 ... |cosmbg, o —sinmbg, /o
K 0 0 0 0 .. |sinmbg, ;o cosmbg, /o)

The 6; parameters are fixed ahead of time and defined as below.

o O O O
o O O O

© = {6; = 1000072C-V/d j c[1,2,...,d/2]}

Rotary Position Embeddings (RoPE)

(?f: gl/\)f:x{—: Z':3/2,4,4,?] izal.}, é:é
k:)) Nka;\ = 13,28, 4,1 y=2 A/Z:‘j

33

Rotary Position Embeddings (RoPE)

Standard attention:
q; = W, x;,Vj
kj — ngj,Vj
St = k?‘lt/\/ k|, V7,1t
-— 1
a; = softmax(s;), vVt

S Cs % UC\\) CU/ l;ezﬁ\ in a more efficient manner:
t)5

RoOPE attention:
T .
q; = W, x;,Vj
d; = Roe,;q;

st = Kj G/ v/ di, Vi, t
a; = softmax(s;), Vt

k;
k;

ngj ’ \V/]
Ro ;k;

Because of the block sparse patternin Ry ,,, we can efficiently com-
pute the matrix-vector product of Ry ,, with some arbitrary vectory

R@,my —

Lo

Y2

/

cos mb.
cos mb.
cos mbs
cos mbs

cos mb g2
cos mbg /o

/

—Y
(912 \
—Y4
Y3

—Yda

\ Yd—1)

sin m6; \
sin m6;
sin m#fs
sin m#fs

sinmf g2
sinmbg o)

Matrix Version of RoPE

Matrix Version of RoPE

A: I'mreally not sure.

But | did write it myself!

GROUPED QUERY ATTENTION (GQA)

Matrix Version of Multi-Headed (Causal) Attentio

X'= concat(X'®, ... X/")

Q) (K(z‘))T

X'() = softmax (+ M) v(©)

Vdy

1)
W(2) multi-headed attention (Z) — VV(’L)
k W§€3) \[\J Q =X q

w(D K@ = Xwg)

w(2)

Vi) = xXW)

—//x1 X, X5 X4

OT O O I X = [X1,...,X4]

T

Grouped Query Attention (GQA)

Multi-head Gro d-que Multi-que
N @ ™) ped-query Lquery
NI N \uts o o
Values
I S \AK\.Y \A\:B - N
Keys

O L’D
O @ L bj
ot

-“oboodon “dbfffoo0 Difooonc

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.

40
Figure from http://arxiv.org/abs/2305.13245

Grouped Query Attention (GQA)

* Key idea: reuse the
same key-value
heads for multiple
different query heads

* Parameters: The
parameter matrices
are all the same size,
but we now have
fewer key/value
parameter matrices
(heads) than query
parameter matrices
(heads)

Figure from http://arxiv.org/abs/2305.13245

Grouped-query

hq = the number of query heads

hiv = the number of key/value heads D U ‘ | :
Assume h, is divisible by hy, /

g = hq/hyy is the size of each group
(i.e. the number of query vectors per key/value vector).

X =[x1,...,x7p]"

VO = XWO Vi € {1,..., 36},
K =XW,) Vi e {1,.... %} 1y,

Q) = XW) i e {1,... %}, Vi € {L,...,g}
iy

SLIDING WINDOW ATTENTION

Sliding Window Attention

Sliding Window Attention

X' = softmax (Q

also called “local attention” M _

and introduced for the
Longformer model (2020)

The problem: regular
attention is computationally
expensive and requires a lot
of memory

The solution: apply a causal
mask that only looks at the
include a window of
(Yaw+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

T

M)V

regular causal attention

—

L 1

sliding window attention (w=6)

sliding window attention (w=4)

43

Sliding Window Attention

Sliding Window Attention

e also called “local attention”
and introduced for the
Longformer model (2020)

* The problem: regular
attention is computationally
expensive and requires a lot
of memory

* The solution: apply a causal
mask that only looks at the
include a window of
(Yaw+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

T

X' = softmax (Q

M)V

3 ways you could implement

1. ndive implementation: just do
the matrix multiplication, but
this is still slow

2. for-loop implementation:
asymptotically faster / less
memory, but unusable in
practice b/c for-loops in
PyTorch are too slow

3. sliding chunks implementation:
break into Q and K into
chunks of size w x w, with
overlap of ¥4w; then compute
full attention within each
chunk and mask out chunk
(very fast/low memory in
practice)

44

