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Reminders

• Homework 0: PyTorch + Weights & Biases
– Out: Wed, Aug 28
– Due: Mon, Sep 9 at 11:59pm
– unique policy for this assignment: we will grant (essentially) any

and all extension requests

• Quiz 1: Wed, Sep 11
• Homework 1: Generative Models of Text
– Out: Mon, Sep 9
– Due: Mon, Sep 23 at 11:59pm
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Recap So Far
Deep Learning
• AutoDiff

– is a tool for computing gradients of a 
differentiable function, b = f(a)

– the key building block is a module with a 
forward() and backward()

– sometimes define f as code in forward() 
by chaining existing modules together

• Computation Graphs
– are another way to define f (more 

conducive to slides)
– so far, we saw two (deep) computation 

graphs
• 1) RNN-LM
• 2) Transformer-LM
• (Transformer-LM was kind of complicated)

Language Modeling
• key idea: condition on previous 

words to sample the next word
• to define the probability of the next 

word…
– …n-gram LM uses collection of massive 

50k-sided dice 
– …RNN-LM or Transformer-LM use a 

neural network

• Learning an LM
– n-gram LMs are easy to learn: just count 

co-occurrences!
– a RNN-LM / Transformer-LM is trained by 

optimizing an objective function with 
SGD; compute gradients with AutoDiff
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Two parts: Deep Learning and Language Modeling



PRE-TRAINING VS. FINE-TUNING
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The Start of Deep Learning

• The architectures of modern deep 
learning have a long history:
– 1960s: Rosenblatt’s 3-layer multi-layer 

perceptron, ReLU )
– 1970-80s: RNNs and CNNs
– 1990s: linearized self-attention

• The spark for deep learning came in 
2006 thanks to pre-training (e.g., 
Hinton & Salakhutdinov, 2006)
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Figure from Vargas et al. (2017) 



Deep Network Training 
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� Idea #3:
1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #2:
1. Supervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #1:
1. Supervised fine-tuning only
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• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
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Idea #3: Unsupervised
Pre-training

1. Unsupervised Pre-training
– Use unlabeled data
– Work bottom-up
• Train hidden layer 1. Then fix its parameters.
• Train hidden layer 2. Then fix its parameters.
• …
• Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning
– Use labeled data to train following “Idea #1”
– Refine the features by backpropagation so that they become 

tuned to the end-task
11

� Idea #3: (Two Steps)
� Use our original idea, but pick a better starting point
� Train each level of the model in a greedy way



The solution:
Unsupervised pre-training

12

…

…Input

Hidden Layer

Output

Unsupervised pre-
training of the first layer: 
• What should it predict?
• What else do we 

observe? 
• The input!

This topology defines an 
Auto-encoder.
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Auto-encoder.
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Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
– x’ is the reconstruction of x
– Loss = || x – DECODER(ENCODER(x)) ||2

– Train with the same backpropagation algorithm for 2-layer 
Neural Networks with xm as both input and output.
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…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Slide adapted from Raman Arora

DECODER:  x’ = h(W’z)

ENCODER:  z = h(Wx)



The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
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The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
Supervised fine-tuning
Backprop and update all 
parameters
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Deep Network Training 
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Training
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Training
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Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Generative pre-training for a deep 
language model:
• each training example is an 

(unlabeled) sentence 
• the objective function is the 

likelihood of the observed 
sentence

Practically, we can batch together 
many such training examples to 
make training more efficient



Training Data for LLMs
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GPT-3 Training Data:

Table from http://arxiv.org/abs/2005.14165 

http://arxiv.org/abs/2005.14165


Training Data for LLMs
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The Pile:
• An open source dataset for 

training language models
• Comprised of 22 smaller 

datasets
• Favors high quality text
• 825 Gb ≈ 1.2 trillion tokens 



MODERN TRANSFORMER MODELS

25



Modern Tranformer Models
• PaLM (Oct 2022)

– 540B parameters
– closed source
– Model:

• SwiGLU instead of ReLU, GELU, or Swish
• multi-query attention (MQA) instead of multi-headed attention
• rotary position embeddings
• shared input-output embeddings instead of separate parameter matrices

– Training: Adafactor on 780 billion tokens
• Llama-1 (Feb 2023)

– collection of models  of varying parameter sizes: 7B, 13B, 32B, 65B
– semi-open source
– Llama-13B outperforms GPT-3 on average
– Model compared to GPT-3: 

• RMSNorm on inputs instead of LayerNorm on outputs
• SwiGLU activation function instead of ReLU
• rotary position embeddings (RoPE) instead of absolute 

– Training: AdamW on 1.0 – 1.4 trillion tokens
• Falcon (June - Nov 2023)

– models of size 7B, 40B, 180B
– first fully open source model, Apache 2.0
– Model compared to Llama-1:

• (GQA) instead of multi-headed attention (MHA) or grouped query attention 
multi-query attention (MQA)

• rotary position embeddings (worked better than Alibi)
• GeLU instead of SwiGLU

– Training: AdamW on up to 3.5 trillion tokens for 180B model, using z-loss for 
stability and weight decay

• Llama-2 (Aug 2023)
– collection of models  of varying parameter sizes: 7B, 13B, 70B.
– introduced Llama 2-Chat, fine-tuned as a dialogue agent
– Model compared to Llama-1:

• grouped query attention (GQA) instead of multi-headed attention (MHA)
• context length of 4096 instead of 2048

– Training: AdamW on 2.0 trillion tokens
• Mistral 7B (Oct 2023)

– outperforms Llama-2 13B on average
– introduced Mistral 7B – Instruct, fine-tuned as a dialogue agent
– truly open source: Apache 2.0 license
– Model compared to Llama-2

• sliding window attention (with W=4096) and grouped-query attention 
(GQA) instead of just GQA

• context length of 8192 instead of 4096 (can generate sequences up to 
length 32K)

• rolling buffer cache (grow the KV cache and the overwrite position i into 
position i mod W)

– variant Mixtral offers a mixture of experts (roughly 8 Mistral models)
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In this section we’ll look at four 
techniques:
1. key-value cache (KV cache)
2. rotary position embeddings (RoPE)
3. grouped query attention (GQA)
4. sliding window attention



Key-Value Cache
• At each timestep, we reuse all 

previous keys and values (i.e. 
we need to cache them)

• But we can get rid of the 
queries, similarity scores, and 
attention weights (i.e. we can 
let them fall out of the cache)
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q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv

a4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this 

timestep



ROTARY POSITION EMBEDDINGS (ROPE)
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Rotary Position Embeddings (RoPE)
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fq(xt,m) ! RΘ,mWT
q xt

fk(xj ,m) ! RΘ,mWT
k xj

st,j = fk(xj ,m)T fq(xt,m)/
√

|k|,
∀j, twherem = t− j

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk , and the rotary matrix RΘ,m ∈ R

dk×dk is given by:

RΘ,m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2i−1/d, i ∈ [1, 2, . . . , d/2]}

Q: Why does this slide 
have so many typos?

A: I’m really not sure. I 
very meticulously type 
up the latex for my 
slides myself and think 
carefully about all the 
things I put in them.

wrong

wrong

wrong

wrong

wrong



Rotary Position Embeddings (RoPE)
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Rotary Position Embeddings (RoPE)
• Rotary position 

embeddings are a 
kind of relative 
position embeddings

• Key idea:
– break each d-

dimensional input 
vector into d/2 
vectors of length 2

– rotate each of the 
d/2 vectors by an 
amount scaled by m

– m is the absolute 
position of the 
query or the key

31
Figure from http://arxiv.org/abs/2104.09864



Rotary Position Embeddings (RoPE)
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qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk . Herein we use d = dk for brevity.

For some fixed absolute positionm, the rotary matrix RΘ,m ∈ R
dk×dk is given by:

RΘ,m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, . . . , d/2]}



Rotary Position Embeddings (RoPE)
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Rotary Position Embeddings (RoPE)

35

qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

Because of the block sparse pattern inRθ,m, we can efÏciently com‐
pute thematrix‐vector product ofRθ,m with some arbitrary vector y
in a more efÏcient manner:

RΘ,my =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1
y2
y3
y4
...

yd−1

yd

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1
cosmθ1
cosmθ2
cosmθ2

...
cosmθd/2
cosmθd/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−y2
y1
−y4
y3
...

−yd
yd−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠



Matrix Version of RoPE
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Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =

⎡

⎢

⎣

1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2

⎤

⎥

⎦

Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

⊗ cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

⊗ sin(C)



Matrix Version of RoPE
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Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

C =

⎡

⎢

⎣

1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2

⎤

⎥

⎦

Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

⊗ cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

⊗ sin(C)

Q: Is this slide correct?

A: I’m really not sure. 

But I did write it myself!



GROUPED QUERY ATTENTION (GQA)
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Matrix Version of Multi-Headed (Causal) Attention
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))

Recall…



Grouped Query Attention (GQA)
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Figure from http://arxiv.org/abs/2305.13245 



Grouped Query Attention (GQA)
• Key idea: reuse the 

same key-value 
heads for multiple 
different query heads

• Parameters: The 
parameter matrices 
are all the same size, 
but we now have 
fewer key/value 
parameter matrices 
(heads) than query 
parameter matrices 
(heads)

41

X = [x1, . . . , xT ]
T

V(i) = XW(i)
v , ∀i ∈ {1, . . . , dkv}

K(i) = XW(i)
k , ∀i ∈ {1, . . . , dkv}

Q(i,j) = XW(i,j)
q , ∀i ∈ {1, . . . , dkv}, ∀j ∈ {1, . . . , g}

Figure from http://arxiv.org/abs/2305.13245 

• hq = the number of query heads

• hkv = the number of key/value heads

• Assume hq is divisible by hkv

• g = hq/hkv is the size of each group
(i.e. the number of query vectors per key/value vector).



SLIDING WINDOW ATTENTION
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Sliding Window Attention
Sliding Window Attention
• also called “local attention” 

and introduced for the 
Longformer model  (2020)

• The problem: regular 
attention is computationally 
expensive and requires a lot 
of memory

• The solution: apply a causal 
mask that only looks at the 
include a window of 
(½w+1) tokens, with the 
rightmost window element 
being the current token
(i.e. on the diagonal)
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regular causal attention sliding window attention (w=4)

sliding window attention (w=6)

X′
= softmax

(

QKT

√

dk

+ M
)

V



Sliding Window Attention
Sliding Window Attention
• also called “local attention” 

and introduced for the 
Longformer model  (2020)

• The problem: regular 
attention is computationally 
expensive and requires a lot 
of memory

• The solution: apply a causal 
mask that only looks at the 
include a window of 
(½w+1) tokens, with the 
rightmost window element 
being the current token
(i.e. on the diagonal)
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sliding window attention (w=4)

X′
= softmax

(

QKT

√

dk

+ M
)

V

3 ways you could implement
1. naïve implementation: just do 

the matrix multiplication, but 
this is still slow

2. for-loop implementation: 
asymptotically faster / less 
memory, but unusable in 
practice b/c for-loops in 
PyTorch are too slow

3. sliding chunks implementation:
break into Q and K into 
chunks of size w x w, with 
overlap of ½w; then compute 
full attention within each 
chunk and mask out chunk 
(very fast/low memory in 
practice)


