10-423/623: Generative Al
Lecture 6 — Generative
Adversarial Networks and
Variational Autoencoders

Henry Chai & Matt Gormley
9/16/24



* Announcements:

* HW1 released 9/9, due 9/23 at 11:59 PM
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Recall:
Vision

Transformer
(ViT)
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Transformer Encoder

A
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MLP
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Embedded
Patches

* Instead of words as input, the inputs are P X P pixel
patches

* Each patch is embedded linearly into a vector of size 1024
* Uses 1D positional embeddings

* Pre-trained on a large, supervised dataset (e.g., ImageNet
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929
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Is this even a
generative
model?

Not
inherently...
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Transformer Encoder

A

MLP Lx q-><—
Head
MLP

i

Transformer Encoder Norm

(D—

Patch + Position -
Embedding Multi-Head

* Extra learnable - — Attention
[class] embedding Linear Projection of Flattened Patches ! ! )

|} « i AR
=
A 5

Norm

Embedded
Patches

* Instead of words as input, the inputs are P X P pixel
patches

* Each patch is embedded linearly into a vector of size 1024
* Uses 1D positional embeddings

* Pre-trained on a large, supervised dataset (e.g., ImageNet
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929
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* Image Classification

* Object Localization

Common Tasks - Object Detection

N Computer * Semantic Segmentation
Vision * Instance Segmentation

* Image Captioning

* Image Generation
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* Class-conditional

generation

* Super resolution
* Image Editing
* Style transfer

* Text-to-image (TTI)

generation



S€a anemone

brain coral
* Class-conditional
slug generation
* Super resolution
Image * Given a class label, sample a new
. . * Image Editing
Generation image from that class
* Image classification takes an * Style transfer
image and predicts its label - Text-to-image (TTI)
using p(y|x) generation

* Class-conditional generation

does this in reverse with p(x|y)
9/16/24 Source: https://arxiv.org/pdf/1906.00446.pdf
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* Class-conditional

generation

* Super resolution

Image

' ° Editi
Generation mage Editing

* Style transfer

SRDi
: L - Text-to-image (TTI
* Given a low-resolution image, ge (TTI)

: : eneration
generate a high-resolution 8

reconstruction of the image

9/16/24 Source: https://arxiv.org/pdf/2104.14951.pdf


https://arxiv.org/pdf/2104.14951.pdf

Inpainting

* Class-conditional

Colorization

generation

* Super resolution

Image

Uncropping

. * Image Editin
Generation & 8

* Inpainting fills in the (pre-specified) missing pixels
* Colorization restores color to a greyscale image

* Uncropping creates a photo-realistic reconstruction

of a missing side of an image

9/16/24 Source: https://arxiv.org/pdf/2111.05826.pdf
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* Class-conditional

generation

* Super resolution

Image

' ° Editi
Generation mage Editing

- Style transfer

* Given two images, present the

_ * Text-to-image (TTI)
semantic content of the source

eneration
image in the style of the 5

reference image

9/16/24 Source: https://arxiv.org/pdf/1508.06576.pdf
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Image

Generation
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Prompt: A propaganda poster depicting
a cat dressed as french emperor

napoleon holding a piece of cheese.

* Given a text description, sample

an image that depicts the prompt

Source: https://arxiv.org/pdf/2307.01952.pdf

* Class-conditional

generation

* Super resolution
* Image Editing
* Style transfer

- Text-to-image (TTI)

generation

10
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Image
Generation
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Prompt: Epic long distance cityscape
photo of New York City flooded by the
ocean and overgrown buildings and
jungle ruins in rainforest, at sunset,
cinematic shot, highly detailed, 8k,
golden light

* Class-conditional

generation

* Super resolution
* Image Editing
* Style transfer

* Text-to-image (TTI)

generation
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Image

Generation
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Source:

Prompt: close up headshot, futuristic
young woman, wild hair sly smile in

front of gigantic UFO, dslr, sharp focus,

dynamic composition

* Class-conditional

generation

* Super resolution
* Image Editing
* Style transfer

* Text-to-image (TTI)

generation
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Slide
Generation?
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Prompt: powerpoint slide explaining
generative adversarial networks for a
generative Al course, easy to follow,
with a clear explanation of the

objective function

* Class-conditional

generation
* Super resolution
* Image Editing
* Style transfer

* Text-to-image (TTI)

generation

13
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Generative
Adversarial

Networks
(GANS)
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* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- a discriminator that takes in an image classifies
whether it is real (label = 1) or fake (label = 0)

* Both models are typically (but not necessarily) neural

networks

14



* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- Example generator: DCGAN

Generative
Adversarial

- An inverted CNN with four fractionally-strided

convolution layers that grow the size of the image from
Networks layer to layer; final layer has three channels to
(GANS) generate color images

3
=

1024

l—%\
1002<H:| ﬂ“. ii_—;
4 :=~§

Project and reshape

CONV 1

9/16/24 Source: https://arxiv.org/pdf/1511.06434.pdf G(2) 15


https://arxiv.org/pdf/1511.06434.pdf

Generative
Adversarial

Networks
(GANS)
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* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- a discriminator that takes in an image classifies

whether itis real (label = 1) or fake (label = 0)

- Example discriminator: PatchGAN

* Traditional CNN that looks
at each patch of the image
and tries to predict whether

it is real or fake; can help

encourage to generator to

avoid creating blurry images
Source: https://arxiv.org/pdf/1803.07422 .pdf
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Generative
Adversarial

Networks
(GANS):
Training
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* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- a discriminator that takes in an image classifies

whether it is real (label = 1) or fake (label = 0)

* Both models are typically (but not necessarily) neural

networks

* During training, the GAN plays a two-player minimax game:
the generator tries to create realistic images to fool the
discriminator and the discriminator tries to identify the

real images from the fake ones

17



Generator

/ fake image
6

Typically, p;,,pise is @ standard
Gaussian i.e., N'(0, 0*I)

GANSs: Architecture

9/16/24

18



x, - GQ(Z) D(],')

Dg(x")
Discriminator

fake image /
¢

GANSs: Architecture
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GANSs: Architecture
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x, - GQ(Z) D(],')

Dg(x")
Discriminator

fake image
¢
x~D D,
l—»{Discriminator
real image

GANSs: Architecture
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x' = Gy(2) Dy

Generator

Dg(x")
Discriminator
w /' =log(1- Dy(Gy(2)))

/ fake image
6 ¢

x~D Dy L=]+]

‘ Dy /

J =log(Dy(x))
real image

Typically, p,,0ise is @ standard

. . 2
Gaussiani.e.,, N'(0,0°1) N e

GANSs: Architecture
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Gy x' = Gy(2) D,

e Dy(x')
, Generator Discriminator
T J' = log(1 - Dy(Go(2)))

0 ¢
x~D

¢

o g < D N

L=]+]

Typically, p,,0ise is @ standard
Gaussian i.e., N'(0, 0*I)

Dy (x)
D/scr/mlnator
= log(Dy(x))
real image

Can we backpropagate through

given that is stochastic?
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Appending a label embedding
to the input of both the
generator and discriminator
allows GANs to generate
specific classes of images

x = Gy(2)

real image

D,

Dg(x")
Discriminator
w /' =log(1- Dy(Gy(2)))
¢ \
D, L=]+]

Dy (x)
Discriminator
J =1log(Dy(x))

Class-conditional GANs

9/16/24
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Gy x' = Gy(2) Dy

s Dy (%'
5 i3 Genera tor Discriminator
W J" =log(1 - Dy(Gy(2)))

S < N

L=]+]

v

J =1log(Dy(x))

So how do we go about training

one of these things?
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The discriminator is trying to minimize the usual cross-entropy

loss for binary classification with labels {real = 1, fake = 0}

<___—"}\‘--__,
-~ . ()\ J' =1log(1 - Dy(Gy(2)))
min log (D¢(X )) + log (1 — Dy (Go(z ))) \
max log (1 — D¢(G9(z(i)))) L=]+]
' /
The generator is trying to maximize the likelihood of its generated

J =1log(Dy(x))

(fake) image being classified as real, according to a fixed discriminator

GANSs: Training

9/16/24



Both objectives (and hence, their sum) are differentiable!

J' =1log(1 - Dy(Ge(2)))

: (4) _ (4)
minlog (D¢(x )) +log (1 Dy(Gol(z ))) \
max log (1 — D¢(G9(z(i)))) L=]+]
Training alternates between: /
1. Keeping @ fixed and backpropagating through D, J = log(Dy(x))

2. Keeping ¢ fixed and backpropagating through G,

GANSs: Training

9/16/24



GANSs:

Training

9/16/24

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our

experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(}) ... 2(")} from noise prior p,(z).
e Sample minibatch of m examples {z'*,.... 2™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 3 [log D () + 1os (1- D (6 (=)

1=

end for
e Sample minibatch of 1 noise samples {z*), ... 2™} from noise prior Py(2).

e Update the generator by descending its stochastic gradient:
1 m
Vo, ;=1 log (1 D (G (z .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.

* Optimization is like block coordinate descent but instead of

exact optimization, we take a step of mini-batch SGD

Source: https://arxiv.org/pdf/1406.2661.pdf

28
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But what
about those
Vision

Transformer

things we
talked about
last week?
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our

experiments.
for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(}) ... 2(")} from noise prior p,(z).
e Sample minibatch of m examples {z'*,.... 2™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 3 [log D () + 1os (1- D (6 (=)

end for
e Sample minibatch of 1 noise samples {z*), ... 2™} from noise prior Py(2).
e Update the generator by descending its stochastic gradient:

Vo, 2 (1- 0 (6 (=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.

* Optimization is like block coordinate descent but instead of

exact optimization, we take a step of mini-batch SGD

Source: https://arxiv.org/pdf/1406.2661.pdf
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TransGANSs

9/16/24
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Source: https://arxiv.org/pdf/2102.07074

Figure 2: The pipeline of the pure transform-based generator and discriminator of TransGAN.
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(a) Standard Self-Attention (b) Grid Self-Attention
Figure 3: Grid Self-Attention across different transformer stages. We replace Standard Self-Attention
with Grid Self-Attention when the resolution is higher than 32 x 32 and the grid size is set to be
16 x 16 by default.
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VITGANSs
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. =.- [ Projection of
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Figure 1: Overview of the proposed VITGAN framework. Both the generator and the discriminator
are designed based on the Vision Transformer (ViT). Discriminator score is derived from the clas-

sification embedding (denoted as [*] in the Figure). The generator generates pixels patch-by-patch
based on patch embeddings.

Source: https://arxiv.org/pdf/2107.04589
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GANSs

Everywhere!
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Cumulative number of named GAN papers by month

Total number of papers
5
o

2014 2015 2016 2017 2018
Year

Source: https://github.com/hindupuravinash/the-gan-zoo/tree/master
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VGG VIiT SDXL
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LeNet AlexNet GANs Transformer CLIP Turbo

Computer
Vision
Timeline
ImageNet VAEs Diffusion Dall-E 2
models Imagen
ResNet Stable

diffusion
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VGG VIiT SDXL

R-CNN Dall-E SDXL
LeNet AlexNet GANSs Transformer CLIP Turbo

Computer
Vision
Timeline
ImageNet VAEs Diffusion Dall-E 2
models Imagen
ResNet Stable

diffusion
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GANS vs.
Diffusion

Training Diffusion generated
images images

9/16/24 Source: https:



https://medium.com/thedeephub/what-is-the-gan-generative-adversarial-networks-2ed6965c13fb

VGG VIiT SDXL

R-CNN Dall-E SDXL
LeNet AlexNet GANSs Transformer CLIP Turbo

Computer
Vision
Timeline
ImageNet 1. VAEs Diffusion Dall-E 2
models Imagen
ResNet Stable

diffusion
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* Fundamental challenge: images are incredibly high-

dimensional objects with complex relationships

Image between elements

Generation * Idea: learn a low-dimensional representation of images,
sample points in the low-dimensional space and project

them up to the original image space

39
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https://en.wikipedia.org/wiki/Autoencoder
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* Issue: latent space is sparse...

* Sampling from latent space of an
autoencoder creates outputs
that are effectively identical to

images in the training dataset

Autoencoder Latent Space

Source: https://www.science.org/doi/10.1126/science.1127647

41


https://www.science.org/doi/10.1126/science.1127647

9/16/24

.
. .
. °
. . 0
L4
.
2 2
3 . " ‘.
5 -
+ - 2 0 2 i B < 2 0 2
What we require What we may inadvertently end up with

Autoencoder Latent Space

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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Latent space of VAE with KL loss Latent space of VAE without KL loss
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Source: https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be 1c038f2
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Variational

Autoencoder:

Network
Perspective
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NN encoder

Figure courtesy of Zack Lipton
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Variational

Autoencoder:

Network
Perspective

9/16/24

NN encoder

* Encoder learns a mean vector and

a (diagonal) covariance matrix for

each input

* These are used to sample a latent

representation e.g.,
MONBVORS N(Me(xa)),(,g(x(i)))

Figure courtesy of Zack Lipton
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Variational
Autoencoder:

Network
Perspective

9/16/24

NN decoder

P¢

* Decoder tries to minimize the
reconstruction error in
expectation between x and a
sample from another learned

(conditional) distribution e.g.,
(D | 7 - N(uqb(z(")),aj,(z(")))

Figure courtesy of Zack Lipton 46



Variational
Autoencoder:

Network
Perspective

9/16/24

NN decoder

P¢

* Decoder tries to maximize the
likelihood of the true (¥ under
another learned (conditional)

distribution e.g.,
(D | 7 - N(uqb(z(")),aq%(z(”))

Figure courtesy of Zack Lipton 47



Variational

Autoencoder:

Network
Perspective

9/16/24

NN decoder

P¢

* Decoder tries to minimize the
negative log-likelihood of the true
x under another learned

(conditional) distribution e.g.,
(D | 7 - N(uqb(z(")),aq%(z(”))

Figure courtesy of Zack Lipton 48



Variational

Autoencoder:

Network
Perspective

9/16/24

NN encoder

 Objective: minimize the negative log-likelihood of the dataset

plus a reqularization term that encourages a dense latent space
N
i=1

£00,8) = ~E,, () [10g s (x]2)] + KL (40(2x) 1 p(2))

Figure courtesy of Zack Lipton
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KL Divergence

9/16/24

* For two distributions g(x) and p(x) over x € X, the

Kullback-Leibler (KL) divergence is

KL(qllp) = E, [l"g%] Z 10102

50



KL Divergence

9/16/24

* For two distributions g(x) and p(x) over x € X, the

Kullback-Leibler (KL) divergence is

_ q(x) q(x)
“Lalip) = Eq [l"gpm] J. . acog e

* The KL divergence

1. measures the proximity of two distributions g and p
2. is minimized when q(x) = p(x) forallx € X
3. isnot symmetric: KL(q || p) # KL(p || q)
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KL Divergence:

Example

9/16/24

* Keeping all else constant, consider the effect of differences

between p and q for certain x’ on KL(q || p)

, , , , q(x’) effect on
1 0.9 0.9 0

no increase
2 0.9 0.1 1.97 big increase
3 0.1 0.9 —0.21 little decrease
4 0.1 0.1 0 little decrease

KL divergence wants good approximations for values with

high probability under q

- KL divergence does not really care about values with low

probability under g
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* Which g minimizes KL(q || p) for the given p?

q(z1,22) = Ni(z1 | 1, 07 )Na(z2 | po, 03)

A

N QNN

vz

KL Divergence: .

In-class
Exercise - % .

\
A
(AR
\Z
NV

A
sm\
2

9/16/24
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Variational

Autoencoder:

Network
Perspective

9/16/24

NN encoder

* Objective: minimize the negative log-likelihood of the dataset

plus a reqularization term that encourages a dense latent space

N
J©0,8) = > £:(6,0)
=1

£:(0,8) = —E, (.0 [10gpy (x©|2)] + KL (45(2|xV) I p(2))
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So what should

we set to?

9/16/24

NN encoder

* Objective: minimize the negative log-likelihood of the dataset

plus a reqularization term that encourages a dense latent space

N
J©0,8) = > £:(6,0)
=1

£00,8) = ~Eq (0 1081 (x©[2)] + KL (0 (2x) 1 p(2))
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Variational

Autoencoder:

Network
Perspective

9/16/24

NN encoder

 Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

1(6,4) —Zf (6, 9)

fi (9' ¢) ~ =

for samples z4, ...,

1
S

S
z logp¢(x(‘)|zs + KL (Qg(le(i)) | p(z))

zs ~ qo(z | x9)
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Can we
backpropagate
through

given that
samples of
are stochastic?

9/16/24

NN encoder

 Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

1(6,4) —Zf (6, 9)

fi (9' ¢) ~ =

for samples z4, ...,

1
S

S
z logp¢(x(‘)|zs + KL (Qg(le(i)) | p(z))

zs ~ qo(z | x9)
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NN encoder

NEOETEINISEF£IE6])] - Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

1(6,4) —Zf (6, 9)

s
1 .
2.(0,¢) ~ — §Z logpg(x9|z;) |+ KL (CI@(le(l)) [ p(z))

9/16/24 for Z; = ,ng(x(i)) + O'g(x(i)) © € where €s ~ N(O; I)



2,00, ) = —qu(zu(i))[logqu(x(i)|Z)] + KL (qe(zlx(i)) I p(z))
S
1 , j
~ (—2 log pe, (x¥ IZS(H))) + KL (o(2]x®) 1 p(2))
ZIOg]\/“(x(‘) M¢(Zs(9)) 0¢(Zs(9)))
+KL(N(He(x(l)) a5(xV) 1 7 (0,1)

1 . . . . .
(23 1og 0 10 (2) + 20(x9) 0., 53 1o(x9) + 5o(x9) © fs)>

FRL(NV (g (x©), a3(xD) 1l 7 (0,1)

Variational Autoencoder: Objective Function
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Source: https://arxiv.org/pdf/1312.6114.pdf
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Three Types of

Graphical
Models
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Directed
Graphical Model

Undirected
Graphical Model

Factor Graph

62



Directed

Graphical
Models a.k.a.
Bayesian

Networks
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P(Xl,Xz,Xg,X4,X5) — P(Xl)
* P(X3]X1)
* P(X3)
* P(X4|X2'X3)
* P(X5]X3)
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Directed

Graphical
Models a.k.a.
Bayesian

Networks
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D
@ P(Xy,...,Xp) = HP(Xdearents(Xd))

i &

A Bayesian Network consists of:

* agraph G (the qualitative specification), which can be
 specified using prior knowledge / domain expertise
* |earned from the training data (model selection)

* conditional probabilities (the quantitative specification)

* these will depend on the relative types of the variables
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