10-423/623: Generative Al Lecture 6 – Generative Adversarial Networks and Variational Autoencoders

Henry Chai & Matt Gormley 9/16/24

Front Matter

- Announcements:
 - HW1 released 9/9, due 9/23 at 11:59 PM

Recall: Vision Transformer (ViT)

- Instead of words as input, the inputs are $P \times P$ pixel patches
- Each patch is embedded linearly into a vector of size 1024
- Uses 1D positional embeddings
- Pre-trained on a large, supervised dataset (e.g., ImageNet 21K, JFT-300M)

Is this even a generative model?

Not inherently...

- Instead of words as input, the inputs are $P \times P$ pixel patches
- Each patch is embedded linearly into a vector of size 1024
- Uses 1D positional embeddings
- Pre-trained on a large, supervised dataset (e.g., ImageNet 21K, JFT-300M)

Common Tasks in Computer Vision

- Image Classification
- Object Localization
- Object Detection
- Semantic Segmentation
- Instance Segmentation
- Image Captioning
- Image Generation

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- Text-to-image (TTI) generation

9/16/24

sea anemone

brain coral

slug

- Given a class label, sample a new image from that class
 - Image classification takes an image and predicts its label using p(y|x)
 - Class-conditional generation does this in reverse with p(x|y)

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- Text-to-image (TTI) generation

Given a low-resolution image,
 generate a high-resolution
 reconstruction of the image

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- Text-to-image (TTI) generation

- Class-conditional generation
- Super resolution
- Image Editing
- Inpainting fills in the (pre-specified) missing pixels
- Colorization restores color to a greyscale image
- Uncropping creates a photo-realistic reconstruction of a missing side of an image

 Given two images, present the semantic content of the source image in the style of the reference image

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- Text-to-image (TTI) generation

Prompt: A propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese.

 Given a text description, sample an image that depicts the prompt

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- Text-to-image (TTI)generation

Prompt: Epic long distance cityscape photo of New York City flooded by the ocean and overgrown buildings and jungle ruins in rainforest, at sunset, cinematic shot, highly detailed, 8k, golden light

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- Text-to-image (TTI)generation

Prompt: close up headshot, futuristic young woman, wild hair sly smile in front of gigantic UFO, dslr, sharp focus, dynamic composition

Image Generation

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- Text-to-image (TTI) generation

Slide Generation?

Prompt: powerpoint slide explaining generative adversarial networks for a generative AI course, easy to follow, with a clear explanation of the objective function

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- Text-to-image (TTI) generation

Generative Adversarial Networks (GANs)

- A GAN consists of two (deterministic) models:
 - a generator that takes a vector of random noise as input, and generates an image
 - a **discriminator** that takes in an image classifies whether it is real (label = 1) or fake (label = 0)
 - Both models are typically (but not necessarily) neural networks

9/16/24 **14**

Generative Adversarial Networks (GANs)

- A GAN consists of two (deterministic) models:
 - a generator that takes a vector of random noise as input, and generates an image
- Example generator: DCGAN
 - An inverted CNN with four *fractionally-strided* convolution layers that grow the size of the image from layer to layer; final layer has three channels to generate color images

Generative Adversarial Networks (GANs)

- A GAN consists of two (deterministic) models:
 - a generator that takes a vector of random noise as input, and generates an image
 - a **discriminator** that takes in an image classifies whether it is real (label = 1) or fake (label = 0)
- Example discriminator: PatchGAN
 - Traditional CNN that looks
 at each patch of the image
 and tries to predict whether
 it is real or fake; can help
 encourage to generator to
 avoid creating blurry images

Source: https://arxiv.org/pdf/1803.07422.pdf

Generative Adversarial Networks (GANs): Training

- A GAN consists of two (deterministic) models:
 - a generator that takes a vector of random noise as input, and generates an image
 - a **discriminator** that takes in an image classifies whether it is real (label = 1) or fake (label = 0)
 - Both models are typically (but not necessarily) neural networks
- During training, the GAN plays a two-player minimax game: the generator tries to create realistic images to fool the discriminator and the discriminator tries to identify the real images from the fake ones

9/16/24 **17**

Typically, p_{noise} is a standard Gaussian i.e., $\mathcal{N}(\mathbf{0}, \sigma^2 I)$

GANs: Architecture

9/16/24

9/16/24

9/16/24 **21**

9/16/24

Can we backpropagate through G_{θ} given that z is stochastic?

9/16/24 **23**

Class-conditional GANs

9/16/24

So how do we go about training one of these things?

9/16/24 **25**

The discriminator is trying to minimize the usual cross-entropy loss for binary classification with labels {real = 1, fake = 0}

$$\min_{\phi} \log \left(D_{\phi}(\mathbf{x}^{(i)}) \right) + \log \left(1 - D_{\phi}(G_{\theta}(\mathbf{z}^{(i)})) \right)$$

$$\max_{\theta} \log \left(1 - D_{\phi}(G_{\theta}(\mathbf{z}^{(i)})) \right)$$

The generator is trying to maximize the likelihood of its generated (fake) image being classified as real, according to a fixed discriminator

GANs: Training

9/16/24 **26**

Both objectives (and hence, their sum) are differentiable!

$$\min_{\phi} \log \left(D_{\phi}(\mathbf{x}^{(i)}) \right) + \log \left(1 - D_{\phi}(G_{\theta}(\mathbf{z}^{(i)})) \right)$$

$$\max_{\theta} \log \left(1 - D_{\phi}(G_{\theta}(\mathbf{z}^{(i)})) \right)$$

Training alternates between:

- 1. Keeping θ fixed and backpropagating through D_{ϕ}
- 2. Keeping $oldsymbol{\phi}$ fixed and backpropagating through $oldsymbol{G}_{ heta}$

GANs: Training

27

GANs: Training

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

 Optimization is like block coordinate descent but instead of exact optimization, we take a step of mini-batch SGD

But what about those Vision Transformer things we talked about last week?

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

 Optimization is like block coordinate descent but instead of exact optimization, we take a step of mini-batch SGD

TransGANs

Figure 2: The pipeline of the pure transform-based generator and discriminator of TransGAN.

TransGANs

Figure 3: Grid Self-Attention across different transformer stages. We replace Standard Self-Attention with Grid Self-Attention when the resolution is higher than 32×32 and the grid size is set to be 16×16 by default.

ViTGANs

Figure 1: **Overview of the proposed ViTGAN framework.** Both the generator and the discriminator are designed based on the Vision Transformer (ViT). Discriminator score is derived from the classification embedding (denoted as [*] in the Figure). The generator generates pixels patch-by-patch based on patch embeddings.

ViTGANs

GANs Everywhere!

Recall: Computer Vision Timeline

9/16/24 **35**

Recall: Computer Vision Timeline

9/16/24

GANs vs. Diffusion

GAN generated images

Training images

Diffusion generated images

Recall: Computer Vision Timeline

Image Generation

- Fundamental challenge: images are incredibly highdimensional objects with complex relationships between elements
- Idea: learn a low-dimensional representation of images, sample points in the low-dimensional space and project them up to the original image space

Recall: Autoencoders

- Issue: latent space is sparse...
 - Sampling from latent space of an autoencoder creates outputs that are effectively identical to images in the training dataset

Autoencoder Latent Space

Autoencoder Latent Space

Variational Autoencoder Latent Space

- Encoder learns a mean vector and a (diagonal) covariance matrix for each input
- These are used to sample a latent representation e.g.,

$$\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)} \sim \mathcal{N}\left(\mu_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}), \sigma_{\boldsymbol{\theta}}^2(\mathbf{x}^{(i)})\right)$$

• Decoder tries to minimize the reconstruction error in expectation between $x^{(i)}$ and a sample from another learned (conditional) distribution e.g.,

$$\widehat{\boldsymbol{x}}^{(i)} \mid \boldsymbol{z}^{(i)} \sim \mathcal{N}\left(\mu_{\boldsymbol{\phi}}(\boldsymbol{z}^{(i)}), \sigma_{\boldsymbol{\phi}}^{2}(\boldsymbol{z}^{(i)})\right)$$

• Decoder tries to maximize the likelihood of the true $x^{(i)}$ under another learned (conditional) distribution e.g.,

$$\widehat{\boldsymbol{x}}^{(i)} \mid \boldsymbol{z}^{(i)} \sim \mathcal{N}\left(\mu_{\boldsymbol{\phi}}(\boldsymbol{z}^{(i)}), \sigma_{\boldsymbol{\phi}}^{2}(\boldsymbol{z}^{(i)})\right)$$

• Decoder tries to minimize the negative log-likelihood of the true $\mathbf{x}^{(i)}$ under another learned (conditional) distribution e.g., $\widehat{\mathbf{x}}^{(i)} \mid \mathbf{z}^{(i)} \sim \mathcal{N}\left(\mu_{\phi}(\mathbf{z}^{(i)}), \sigma_{\phi}^2(\mathbf{z}^{(i)})\right)$

• Objective: minimize the negative log-likelihood of the dataset plus a *regularization term* that encourages a dense latent space

$$J(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{i=1}^{N} \ell_{i}(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$\ell_{i}(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\mathbb{E}_{q_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)})} [\log p_{\boldsymbol{\phi}}(\mathbf{x}^{(i)}|\mathbf{z})] + KL(q_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)}) \parallel p(\mathbf{z}))$$

KL Divergence

• For two distributions q(x) and p(x) over $x \in \mathcal{X}$, the Kullback-Leibler (KL) divergence is

$$KL(q||p) = \mathbb{E}_q \left[\log \frac{q(x)}{p(x)} \right] = \sum_{x \in \mathcal{X}} q(x) \log \frac{q(x)}{p(x)}$$

KL Divergence

• For two distributions q(x) and p(x) over $x \in \mathcal{X}$, the Kullback-Leibler (KL) divergence is

$$KL(q||p) = \mathbb{E}_q \left[\log \frac{q(x)}{p(x)} \right] = \int_{x \in \mathcal{X}} q(x) \log \frac{q(x)}{p(x)} dx$$

- The KL divergence
 - 1. measures the **proximity** of two distributions q and p
 - 2. is minimized when q(x) = p(x) for all $x \in \mathcal{X}$
 - 3. is **not** symmetric: $KL(q || p) \neq KL(p || q)$

KL Divergence: Example

• Keeping all else constant, consider the effect of differences between p and q for certain x' on $KL(q \mid\mid p)$

x'	q(x')	p(x')	$q(x')\log\left(\frac{q(x')}{p(x')}\right)$	effect on $KL(q \mid\mid p)$
1	0.9	0.9	0	no increase
2	0.9	0.1	1.97	big increase
3	0.1	0.9	-0.21	little decrease
4	0.1	0.1	0	little decrease

- ullet KL divergence wants good approximations for values with high probability under q
- KL divergence does not really care about values with low probability under q

KL Divergence: In-class Exercise

• Which q minimizes KL(q || p) for the given p?

$$p(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu} = [0, 0]^T, \boldsymbol{\Sigma})$$

$$q(x_1, x_2) = \mathcal{N}_1(x_1 \mid \mu_1, \sigma_1^2) \mathcal{N}_2(x_2 \mid \mu_2, \sigma_2^2)$$

 Objective: minimize the negative log-likelihood of the dataset plus a regularization term that encourages a dense latent space

$$J(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{i=1}^{N} \ell_i(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\mathbb{E}_{q_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\phi}}(\mathbf{x}^{(i)}|\mathbf{z}) \right] + KL \left(q_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)}) \parallel p(\mathbf{z}) \right)$$

So what should we set p to?

 Objective: minimize the negative log-likelihood of the dataset plus a regularization term that encourages a dense latent space

$$J(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{i=1}^{N} \ell_i(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$\ell_{i}(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\mathbb{E}_{q_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}^{(i)})} [\log p_{\boldsymbol{\phi}}(\boldsymbol{x}^{(i)}|\boldsymbol{z})] + KL(q_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}^{(i)}) \parallel p(\boldsymbol{z}))$$

 Objective: minimize the negative log-likelihood of the dataset plus a regularization term that encourages a dense latent space

$$J(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{i=1}^{N} \ell_i(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) \approx -\left(\frac{1}{S} \sum_{s=1}^{S} \log p_{\boldsymbol{\phi}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}_s)\right) + KL\left(q_{\boldsymbol{\theta}}(\boldsymbol{z} | \boldsymbol{x}^{(i)}) \parallel p(\boldsymbol{z})\right)$$

for samples
$$\mathbf{z}_1, \dots, \mathbf{z}_S \sim q_{\theta}(\mathbf{z} \mid \mathbf{x}^{(i)})$$

Can we backpropagate through q_{θ} given that samples of z are stochastic?

 Objective: minimize the negative log-likelihood of the dataset plus a regularization term that encourages a dense latent space

$$J(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{i=1}^{N} \ell_i(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) \approx -\left(\frac{1}{S} \sum_{s=1}^{S} \log p_{\boldsymbol{\phi}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}_s)\right) + KL\left(q_{\boldsymbol{\theta}}(\boldsymbol{z} | \boldsymbol{x}^{(i)}) \parallel p(\boldsymbol{z})\right)$$

for samples
$$\mathbf{z}_1, \dots, \mathbf{z}_S \sim q_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}^{(i)})$$

Reparameterization Trick

• Objective: minimize the negative log-likelihood of the dataset plus a *regularization term* that encourages a dense latent space

$$J(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{i=1}^{N} \ell_i(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) \approx -\left(\frac{1}{S} \sum_{s=1}^{S} \log p_{\boldsymbol{\phi}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}_s)\right) + KL\left(q_{\boldsymbol{\theta}}(\boldsymbol{z} | \boldsymbol{x}^{(i)}) \parallel p(\boldsymbol{z})\right)$$

for
$$\mathbf{z}_{S} = \mu_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) + \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \odot \boldsymbol{\epsilon}_{S}$$
 where $\boldsymbol{\epsilon}_{S} \sim N(\mathbf{0}, I)$

$$\begin{split} \ell_{i}(\boldsymbol{\theta}, \boldsymbol{\phi}) &= -\mathbb{E}_{q_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)})} [\log p_{\boldsymbol{\phi}}(\mathbf{x}^{(i)}|\mathbf{z})] + KL \left(q_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)}) \parallel p(\mathbf{z}) \right) \\ &\approx -\left(\frac{1}{S} \sum_{s=1}^{S} \log p_{\boldsymbol{\phi}}(\mathbf{x}^{(i)}|\mathbf{z}_{s}(\boldsymbol{\theta})) \right) + KL \left(q_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)}) \parallel p(\mathbf{z}) \right) \\ &= -\left(\frac{1}{S} \sum_{s=1}^{S} \log \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_{\boldsymbol{\phi}}(\mathbf{z}_{s}(\boldsymbol{\theta})), \boldsymbol{\sigma}_{\boldsymbol{\phi}}^{2}(\mathbf{z}_{s}(\boldsymbol{\theta})) \right) \\ &+ KL \left(\mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}), \boldsymbol{\sigma}_{\boldsymbol{\theta}}^{2}(\mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{0}, l) \right) \\ &= -\left(\frac{1}{S} \sum_{s=1}^{S} \log \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_{\boldsymbol{\phi}}(\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) + \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \odot \boldsymbol{\epsilon}_{s}), \boldsymbol{\sigma}_{\boldsymbol{\phi}}^{2}(\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) + \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \odot \boldsymbol{\epsilon}_{s} \right) \\ &+ KL \left(\mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}), \boldsymbol{\sigma}_{\boldsymbol{\theta}}^{2}(\mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{0}, l) \right) \end{split}$$

Variational Autoencoder: Objective Function

Variational
Autoencoder:
Latent Space
Visualization

Variational Autoencoder: Generated Samples...

Three Types of Graphical Models

Directed Graphical Model

Undirected Graphical Model

Factor Graph

Directed
Graphical
Models a.k.a.
Bayesian
Networks

$$P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}) = P(X_{1})$$

$$* P(X_{2} | X_{1})$$

$$* P(X_{3})$$

$$* P(X_{4} | X_{2}, X_{3})$$

$$* P(X_{5} | X_{3})$$

Directed Graphical Models a.k.a. Bayesian Networks

$$P(X_1, ..., X_D) = \prod_{d=1}^{D} P(X_d | \text{parents}(X_d))$$

A Bayesian Network consists of:

- \bullet a graph G (the *qualitative specification*), which can be
 - specified using prior knowledge / domain expertise
 - learned from the training data (model selection)
- conditional probabilities (the quantitative specification)
 - these will depend on the relative types of the variables