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Reminders

* Homework 1: Generative Models of Text
— Out: Mon, Sep 9

— Due: Mon, Sep 23 at 11:59pm




DIRECTED GRAPHICAL MODEL



Three Types of Graphical Models

Directed Graphical Undirected Graphical

Factor Graph



Directed Graphical Model
PO 7, X3) = PO P00l XY (e | X, X0

Example Definition

« Adirected graphical model (aka. Bayesian
@ network) is a directed acyclic graph that
represents the conditional independencies of a

@ @ set of variables X;,.... X5
* Each node is variable X, and each edge implies a
directional influence between a pair of variables

@ @  The DGM factorizes the joint distribution over
the variables as a product of conditional
P(X1, X3, X3, X4, X5) = probabilities: .
P(X5 | X3)P(X4q | X2, Xs) P(Xy,....Xr) = HP(Xt | parents(X;))

P(X3)P(X2 | X1) P(X) =1



Directed Graphical Model

Example

P(Xl,XQ,Xg,X4,X5) =
P(X5 \ X3)P(X4 ] X2,X3)
P(X3)P(X2 | X1)P(X)

—

the graph (qualitative specification) could be:
specified using domain expertise about causal relationships
learned from data
chosen because of nice computational properties

the conditional probabilities (quantitative specification) is:
depends on the types of variables involved
typically learned from data
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Quantitative Specification

Example: Conditional probability tables (CPTs)
for discrete random variables
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© Eric Xing @ CMU, 2006-2011

P(a,b,c.d) =
b® |0.33 P(a)P(b)P(c|a,b)P(d|c)
b' |0.67 \_’/__/ - \




Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

P(a,b,c.d) =
AN(Up Z,)  B-N(it, 35) P(a)P(b)P(c|a,b)P(d|c)

C~N(A+B, Z.)

P(D] C)

‘ D~N(ug+C, 2,)
D

© Eric Xing @ CMU, 2006-2011



Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

P(a,b,c.d) =

a® |0.75 ° |0.33 P(a)P(b)P(c|a,b)P(d|c)

a' 10.25 b |0.67

C~N(A+B, Z.)

‘ D~N(uq+C, Z4)

© Eric Xing @ CMU, 2006-2011



Observed Variables

* In a graphical model, shaded nodes are “observed”, i.e. their
values are given

10



MARKOV MODEL



Markov Model

1st-order Markov assumption:

for a sequence of random

variables, the probability p(xt | z1,. ., 2e-1) = p(wt | T4-1)
distribution over x, random

variables is conditionally

independent of x, ,..., X,

given X

15t-order Markov model: a

defines a joint distribution p(z1,...,x7) = p(x1) Hp(;yt | xi_1)
over a sequence of variables

using a Markov assumption t=2

We can represent the Markov
model as a directed graphical
model

O—O—— )



In-class Exercise: RNN as a DGM

» & @

Given a five-word sequence, [w{, w,, w5, w,, Wt |, how could @ @ @
we re&(l\esent the implied probability distributions of an F(U,, Wz, Wy, Z,,ZZ,ZQ =
RNNas a directed graphical model?

?@u,; Nz Wy, WLI/WS) = F(‘“D P/‘J%\Vs ?(“3\”\)%}\”5”‘ F(“s\ww WLD

O oEoR O

9/16/24 13



Locally Normalized vs. Globally Normalized

e\’\ﬁb&f — Oml7 7_{:0""953‘”%,\

5@\’& Directed Graphical Undirected Graphical Factor Graph

- cﬁcj& Model Model

S

)
<
s
<)
|

d 1
tl;[lP(Xt | parents(X;)) p(x) = 7 H Ve (T )
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UNSUPERVISED LEARNING



Unsupervised Learning

Assumptions:

1. our data comes from some distribution
P*(Xo)

2. we choose a distribution pg(x,) for which
sampling x, ~ pg(X,) is tractable

Goal: learn 6 s.t. pg(X,) = p*(X,)



Unsupervised Learning

Assumptions: Example: autoregressive LMs

1. our data comes from some distribution * true p*(x,)is the (human) process that
p*(x,) produced text on the web

2. we choose a distribution pg(x,) for which * choose pg(x,) to be an autoregressive
sampling x, ~ pg(X,) is tractable language model

Goal: learn 6 s.t. pg(X,) = p*(X,) — autoregressive structure means that

p(x; | x,, ..., X¢,) ~ Categorical(.) and
ancestral sampling is exact/efficient
* learn by finding
e=togom () O = argmaxg log(pe(X,))
using gradient based updates on
Ve Iog(pe(xo))

fl('r') ]

| T\
L

T=p w.lh,) T:p W;Y Tf p(w|h,)
h, A
{




Unsupervised Learning

Assumptions:

1. our data comes from some distribution .
p*(X,)

2. we choose a distribution pg(x,) for which .

sampling x, ~ pg(X,) is tractable
Goal: learn 6 s.t. pg(X,) = p*(X,)

Dg(x)

p(real | image)

y J=log(1- Dy(Gu(2)))
0 / 0\‘

Dy(x’)
p(real | image) \

y J =log(Dy(x"))
1 /

fake image

X'~ pdata(')

¥

real image

so optimize a minimax loss instead

Example: GANs

true p*(x,) is distribution over photos taken
and posted to Flikr

choose pg(x,) to be an expressive model
(e.g. noise fed into inverted CNN) that can
generate images
— sampling is typically easy:
z ~N(0, 1) and x, = fg(2)
learn by finding 6 = argmaxg log(pe(x,))?
— No! Because we can’t even compute
log(pe(x,)) or its gradient

— Why not? Because the integral is
intractable even for a simple 1-hidden
layer neural network with nonlinear
activation

o) = / p(xo | 2)p(z)dz



Unsupervised Learning

Assumptions: Example: VAEs [ Diffusion Models

1. our data comes from some distribution * true p*(x,) is distribution over photos taken
p*(x,) and posted to Flikr

2. we choose a distribution pg(x,) for which * choose pg(x,) to be an expressive model
sampling x, ~ pg(X,) is tractable (e.g. noise fed into inverted CNN) that can

Goal: learn 6 s.t. pg(X,) = p*(X,) generate images

— sampling is will be easy
* learn by finding © = argmaxg log(pe(x,))?
— Sort of! We can’t compute the gradient

Ve log(pe(Xo))
— So we instead optimize a variational
po(xXe—1|xt)
>@ ; @ o 50 lower bound (more on that later)

Dite et i | -
qixe|Xe—1) 9 | ~

Figure from Ho et al. (2020)



Latent Variable Models

 For GANs and VAEs,
we assume that there
are (unknown) latent
variables which give
rise to our
observations

e The vector z are those
[atent variables

* Afterlearning a GAN
or VAE, we can
interpolate between

images in latent z

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space

S p ace learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

38
Figure from Radford et al. (2016)



From VAESs to Diffusion Models

* Next we will consider (1) diffusion models and (2)
variational autoencoders (VAEs)

* The steps in defining these models is roughly:
— Define a probability distribution involving Gaussian noise
— Use a variational lower bound as an objective function

— Learn the parameters of the probability distribution by optimizing
the objective function

e So what s a variational lower bound?



HIGH-LEVEL INTRO TO VARIATIONAL
INFERENCE



Variational
Autoencoder:

Network
Perspective

9/16/24

NN encoder

- Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

N
](H, ¢) — z 'fi(eJ ¢)
=1

£:(8,9) = ~E,,(,,0)[logpp(x?|2)] + KL (a0(2|x?) 1 p(2))

41



Variational
Autoencoder:

Network
Perspective

9/16/24

NN encoder

* Objective: minimize the nega

plus a regularization term thg

N
1©0,4) =) £:(6,4) 0
=1

£:(8,9) = ~E,,(,,0)[logpp(x?|2)] + KL (a0(2|x?) 1 p(2))

42



@\A@? Variational Inference
\ @ F(X‘WXZIZl/ZzBS— P(ZB ’\)(ZD ’\)(X||Ztv P(Xz\xl)z‘lzzv
*9)—"Y" A common Problem:

— Suppose we have an interesting distribution'p(x, 2)
and we wish to work with its posterior p(z | x)

— For training data x and latent variables z, estimating
the posterior p(z | x) is usually intractable!

\@%@

M

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:


https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

A Common Problem:

— Suppose we have an interesting distribution p(x, z) and we wish
to work with its posterior p(z | x) or the marginal p(x)

— For training data x and latent variables z, estimating the posterior
p(z | x) or the marginal p(x) is usually intractable!

p(x,z) Question: Why is p(x) often intractable to compute?

p(Z ‘ X) — p(X) Answer: PGO _ §§ ?@2) &%

we assume P@) = Z P&/—%
p(x) is >
intractable


https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

A Common Problem:

— Suppose we have an interesting distribution p(x, z)
and we wish to work with its posterior p(z | x)

— For training data x and latent variables z, estimating
the posterior p(z | x) is usually intractable!

Solution:

— Approximate p(z | x) with a simpler q(z | x)

— Typically g(z | x) has more independence
assumptions than p(z | x), which is fine b/c q(z | x) is
tuned for a specific x

— Key idea: pick a single g(z | x) from some family Q
that best approximates p(z | x)


https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

Terminology:

— d(z | x): the variational approximation
— Q: the variational family

— Usually gg(z

X) is parameterized by some 0 called

variational parameters

— Usually p4(z

X) is parameterized by some fixed a -

we’ll call them the parameters

Example Algorithms:
— mean-field variational inference
— loopy belief propagation
— tree-reweighted belief propagation
— expectation propagation


https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

 Question: Do we learn a single distribution gq(z | x)
for all x’s?

* Answer: Not necessarily, it’s quite common to infer a
separate qg for each x!

— Consider the sampling equivalent of this:
* you could draw samples z()~p(z | x)

* then train some simple qg(z | x’) on z(), z®) ... z(N)
* hope that the sample adequately represents the posterior for
the given x’

— How is VI different from this?
* VI doesn’t require sampling
e Vlis fast and deterministic

* Why? b/c we choose an objective function (KL divergence) that
defines which gg best approximates p,, and exploit the special
structure of gg to optimize it


https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

V.l. offers a new design decision

— Choose the distribution p,(z | x) that you really
want, i.e. don’t just simpify it to make it
computationally convenient

— Then design a the structure of another distribution
do(z | X) such that V.I. is efficient

W \g(x,ﬂ = F(XIZ\P(Q
o) = (O 1)

P(x&z)z ML ) x = MIP(2)
O othue

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:

48


https://www.cs.jhu.edu/~jason/tutorials/variational.html

THE MEAN FIELD APPROXIMATION



Mean Field Approximation

The mean field approximation assumes our variational
approximation gg(z) treats each variable as independent

Pa(z | x) = H% Zc, X

cEC

(@) = [[ a0 Q
7



Mean Field Approximation

The mean field approximation assumes our variational
approximation qgg(z) treats each variable as independent

Ising Model

= H qt (Zt)




Mean Field Approximation

Latent Dirichlet Allocation (LDA)

* Uncollapsed Variational Inference, aka. Explicit V.I.
(original distribution)

Dirichlet

Document-specific
topic distribution

Topic assignment

Observed word

&

&

Topic

O
.

o

Dirichlet

NG

K

®



Mean Field Approximation

Latent Dirichlet Allocation (LDA)

* Uncollapsed Variational Inference, aka. Explicit V.I.
(mean field variational approximation)

Document-specific
topic distribution @ Topic
Topic assignment @




MEAN FIELD VARIATIONAL INFERENCE



KL Divergence

* Definition: for two distributions q(x) and p(x) over x € X, the KL
Divergence is:

B q<x>_zq<> g 14
KL(q||p) = Eya) [mg@]{ 1. a(e) log 2o e

* Properties:

— KL(qg || p) measures the proximity of two distributions g and p
— KL is not symmetric: KL(q || p) # KL(p || )

— KLis ||'iimized when q(x) = p(x) forall x e X



Mean Field V.I. Overview

Goal: estimate py(z | x)
we assume this is intractable to compute exactly

Idea: approximate with another distribution qg(z | X) = p(z | x) for each x

Mean Field: assume qg(z | X) = []; g(z¢ | X; 0) ? ? ?

i.e., we decompose over variables
other choices for the decomposition of qg(z) give rise to “structured mean field”

Optimization Problem: pick the g that minimizes KL(q || p)

q(z | x) = argmin KL(q(z | x) || p(z | x))
q(z|x)€Q

) 'equivalent
0 = argminKL(go(2 | %) || pa2 | %)) —
€

Optimization Algorithm: various options

— e.g. coordinate descent repeatedly picks the best gy(z, | x) based on the
other { q.(z, | x) }.. being fixed

— e.g. gradient descent optimizes a surrogate objective ELBO(qg) to find 6

63



Optimizing KL Divergence

* Question: How do we minimize KL?
0

argmin KL(go(z | %) || pa(z | %))
o 1 j

* Answer #1: Oh no! We can’t even compute this KL. J

Why we can’t compute KL... llog (q(z %) )] ) ?\x ) / F(ﬂ\

KL(q(z | %) || p(z | X)) = Eqalx) p(z | x)

— Eq(z|x) logq Z | X) — Eq(z|x) lng(Z | X)]

|
(z | x)

— Eq(z|x) log Q(Z X) — Eq(z|x) :logp(x, Z)] + Eq(zlx) [lng(X)]
(z | x)

= Ey %) 10g q(z | X)] — Ey@zx) [log p(x + 10gp(X),
this J

expectation we assumed this
does not is intractable to

depend on q compute!




Optimizing KL Divergence

Question: How do we minimize KL?
0

argmin KL(go(z | X) || pa(z | X))

A=) ] Y J

Answer #2: We don’t need to compute this KL ——
We can instead maximize the ELBO (i.e. Evidence Lower BOund)

ELBO(0) = Eqy () 108 1 (%, )] — Eogy a1y [log a6 (2 | %)]

_ The ELBO fora DGM
Here is why...

9 = argmin KL(gs(z | ) || pa(z | x)

= argininl Bq, () log go(2 | X)] — Eq, (a)x) [10g Pa (X, 2)] + 10g pa(x)

1 J
= argmin g, ix) [108 90 (2 | X)] = Eogy alx) [108 P (X, 2)] }

dropping the
intractable term
gives the ELBO

= argmax ELBO(¢yp)
0

65



ELBO as Objective Function

What does maximizing ELBO(qg) accomplish?

ELBO(gs) =

1. The first expectation is
high if gg puts probability
mass on the same values
of z that p, puts
probability mass

E,, uto) [l0g Da (%, 2)] = Eyy o [l0g a0 (2 | %)

2. The second term is the
entropy of g and the
entropy will be high if gg
spreads its probability
mass evenly

e

66



ELBO as lower bound

Theorem: For any ¢, log p(x) > ELBO(q)
i.e. ELBO(q) is a lower bound for log p(x)

Note:
ELBO(qs) = Ey,(zx) [logpa(X,2)] — Eq, (z1x) l0g g (2 | x)]
KL(q(z [ x) || p(z | X)) = Eqlx) 108 ¢(2 | X)] = Eqapx) 108 p(X, 2)] + Bz [log p(x)]

Proof #1: Takeaways:
_ T 1. in variational inference, we find
1. ,07 F()O - KL(CL” EB T éfL%(ﬁ) the g that gives the tightest
bound on the normalization
0, }< B Cﬁ/)\ﬁw = 0 constant for p(z | x)

3 ‘ \ / 2. maximizing the ELBO is
Oj ((\) (% \ > E LBC)(%B equivalent to minimizing KL

3. maximizing the ELBO is

maximizing a lower bound on the
likelihood p(x)

67



ELBO’s relation to log p(x)

Theorem:

.’Qf “1 g F(x) ELBo ()

I-e. EL%(AL) (s o (ower  bourd /51060

Proof #2:

Rcm” Jensens "“Z"‘HV‘ g(EZXJ> z EZIF(X)-L/ -gr ConCave ;
I°J?x3— ’) S, P(xﬂcl’t (“‘9“‘”

loy S, “plxa) @A k- by 2)

’vE%,)[ Pl /zs/i(z)} (15, § oxgeckhd)
= E,L(z)floj(%(-"z’(%ﬂ (b Tewwi Tues)
zmiloﬁf(x DI é?(z)i/ﬁz(z\)—& ELBO(y)

= o f;(x) z ELBO(p)

68



VARIATIONAL AUTOENCODERS



Why VAES?

e Autoencoders:

— learn a low dimensional representation of the input, but hard to
work with as a generative model

— one of the key limitations of autoencoders is that we have no way
of sampling from them!
* Variational autoencoders (VAEs)

— by contrast learn a continuous latent space that is easy to sample
from!

— can generate new data (e.g. images) by sampling from the learned
generative model

70



Variational Autoencoders

The Something-like-a-VAE Model
 Consider a model p(x, z) = p(x | z) p(2)
@ — where p(z)is a N(o, I)
— where x = gg(z/10 + z/||z|) é%;; (AZB

i.e. we don’t use parameters

pgﬁ(xa Z)

them to values x

N

e ?(&x‘ﬂ * Trivially, we can draw samples of z and directly convert
d

\}?M

z ~ Gaussian(0, 1) The VAE Model
* The directed graphical model for VAE is the same as

| iy for the silly model above, and it’s quite simple

- . AT (ignoring the neural net details that give rise to x)
 Key idea of VAE: define gy(z) as a neural net and learn
LI T ¢ from data

Figure from Doersch (2016)



Variational Autoencoders

Neural Network Perspective

* We can view a variational autoencoder (VAE)
as an autoencoder consisting of two neural
networks

* VAEs (as encoders) define two distributions:
— encoder: gg(z | x)
— decoder: py(x | z)

* Parameters © and ¢ are neural network
parameters (i.e. © are not the variational
parameters)

P¢(X | z)

qo(z | X)




Variational Autoencoders

Graphical Model Perspective

We can also view the VAE from
the perspective of variational
inference p¢(X, Z)

In this case we have two )
distributions: z ~ Gaussian(0, )

— model: py(x, z) = P¢(¢R) p(2)
— variational approximation:
q?xzf(x; 6)(2 l X)
We have the same model
parameters ¢ q,(z | x)

The variational parameters A are
a function of NN parameters 0 A=f(x; 0)




VAEs:
Neural
Network
View

,’Z:L“’i"_: 10(1|x\ ,_:/,,@;/— e e ble 7
G ’
Gvsinle 1, 20— i@:};?g‘“ "@\(ZM
i —\:f6o |
ey YV a
Foy—— e e o tpd
Debs: p&l®) X h ZiZn S,
Byxl) e AT L
oo Tty 2y shocshic £ %&x/*’ 73
M/ = K@TB
B%T_GIW*/ ook S,

@’/—\ (404' v ble
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Variational
Autoencoder:

Network
Perspective

9/16/24

NN encoder

- Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

N
](H, ¢) — z 'fi(eJ ¢)
=1

£:(8,9) = ~E,,(,,0)[logpp(x?|2)] + KL (a0(2|x?) 1 p(2))

75



Variational
Autoencoder:

Network
Perspective

9/16/24

NN encoder

* Objective: minimize the nega

plus a regularization term thg

N
1©0,4) =) £:(6,4) 0
=1

£:(8,9) = ~E,,(,,0)[logpp(x?|2)] + KL (a0(2|x?) 1 p(2))

76



9/1

6/24

VAE Objective Function
~ ELBO(gp) =‘é5qe<z|x> log pa(x,2)] — Eqq %) [log go(z | x)]

f-([:/z Iloj F(x\z\ﬂ *LE7®O; P(ZB&’ Eg“%@

== = Jogq(zIx
GACHERS A s |

_ % l

£10,8) = ~E 0y 1087 (x0[2)] + KL (qu(2lx®) 1 p(2))




NN encoder

Rep_arkameterlzatlo * Objective: minimize the negative log-likelihood of the dataset
N Tric

plus a regularization term that encourages a dense latent space

N
J©0,8) =) £:(6,6)
=1

S
2:.(0,9) ~ — (Z logp¢(x(i)|zs(9))> + KL (C[g(le(i)) [ p(z))
s=1

. forz,(0) = ug (x(i)) + ag(x(i)) ® €, where e ~ N(0,1) s



VAE RESULTS



VAEs for Image Generation

Kingma & Welling (2014)
 introduced VAEs

Auto-Encoding Variational Bayes

* applied to image generation Dicder . Kinga Vi Wling

Machine Learning Group Machine Learning Group
Universiteit van Amsterdam Universiteit van Amsterdam
IVIO e dpkingma@gmail.com welling.max@gmail.com

. N(z; o, |
p ¢(Z) ~ (Z’ O ) ) Abstract
1 m { 1 H rform efficient inf d learning in directed probabilisti
¢ p ¢(X | Z) I S a U It I V a rl a t e m?):ivelzz,ir;nwtflep;recs):llc: ofc lci)riltilrl:u?)fjesnf;ei[: Vafia:t?;:sg vl/rllth ;L?aitalp),;: p?)slte::i(l)i

distributions, and large datasets? We introduce a stochastic variational inference

Ld o

G a u S S I a n W I t h m e a n a n d and learning algorithm that scales to large datasets and, under some mild differ-
entiability conditions, even works in the intractable case. Our contributions is

M two-fold. First, we show that a reparameterization of the variational lower bound

V a rl a n C e C O m p u t e d b y a n yields a lower bound estimator that can be straightforwardly optimized using stan-
dard stochastic gradient methods. Second, we show that for i.i.d. datasets with

continuous latent variables per datapoint, posterior inference can be made espe-

M L P) fu l ly C O n n e Ct e d n e u ra l cially efficient by fitting an approximate inference model (also called a recogni-
tion model) to the intractable posterior using the proposed lower bound estimator.

n etWO rk Wit h a S i n gl e h i d d e n Theoretical advantages are reflected in experimental results.

layer with parameters ¢

* ge(z | x)is a multivariate
Gaussian with diagonal
covariance structure and with
mean and variance computed
by an MLP with parameters 0

Figure from Kingma & Welling (2014)



VAEs for Image Generation

— 1000

-100 : hmn : -125 . tram = 50000

—-130

T
1

—=110f

— Wake-Sleep (train)
- = Wake-Sleep (test)
—  MCEM (train)

- = MCEM (test)

- AEVB (train)

- - AEVB (test)
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—140
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| | | |
= — — —
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0
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Figure 3: Comparison of AEVB to the wake-sleep algorithm and Monte Carlo EM, in terms of the
estimated marginal likelihood, for a different number of training points. Monte Carlo EM is not an
on-line algorithm, and (unlike AEVB and the wake-sleep method) can’t be applied efficiently for
the full MNIST dataset.

Figure from Kingma & Welling (2014)
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VAEs for Imag
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pe(x|z) with the learned parameters 6.

Figure from Kingma & Welling (2014)
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VAEs for Image Generation
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(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space
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Figure 5: Random samples from learned generative models of MNIST for different dimensionalities

of latent space.
Figure from Kingma & Welling (2014)



VAEs for Text Generation

Bowman et al. (2015) Model
« example of an applicationof ~ * pg(z) ~N(z; o, 1)
VAEs to discrete data * py(x|z)isan LSTM Language
* built on the sequence-to- odel with parameters ¢
sequence framework: o qe(z I X) is a multivariate
— inputisreadinbyan LSTM Gaussian with mean and
— output is generated by an variance computed by an
LSTM-LM LSTM with parameters 6

RNNs work <EOS>
t t ¢

Decoding Decoding | | Decoding
LSTM  |~LSTM [+ LSTM
Cell Cell Cell

f f t

RNNs work <E0S> RNNs work

Figure 1: The core structure of our variational au-
toencoder language model. Words are represented
using a learned dictionary of embedding vectors.

Figure from Bowman et al. (2015)

88



VAEs for Text Generation

INPUT
MEAN

SAMP. 1
SAMP. 2
SAMP. 3

we looked out at the setting sun .
they were laughing at the same time .

ill see you in the early morning .
i looked up at the blue sky .
it was down on the dance floor .

i went to the kitchen .
1 went to the kitchen .

1 went to my apartment .
i looked around the room .
i turned back to the table .

how are you doing ?
what are you doing ?

“ are you sure ?

what are you doing ?
what are you doing ?

Table 7: Three sentences which were used as inputs to the VAE, presented with greedy decodes from the

mean of the posterior distribution, and from three samples from that distribution.

“ i want to talk to you . ”
“t want to be with you . ”

“ do n’t want to be with you .
i do n’t want to be with you .
she did n’t want to be with him .

»

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Table 8: Paths between pairs of random points in
VAE space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

Figure from Bowman et al. (2015)
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VQ-VAE

* Vector Quantized VAE (VQ-VAE) learns a continuous
codebook, but the encoder outputs discrete codes

* Decoder takes a code and generates a sample
conditioned on it

e, e,e, e,
Embedding
Space

CNN | y— e p(xiz,)

zq(x) e, v.L

z,(x)

2,0~ q(zx)

<
re

Encoder Decoder

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The
output of the encoder z(x) is mapped to the nearest point eo. The gradient V , L (in red) will push the
encoder to change its output, which could alter the configuration in the next forward pass.

Figure from van den Oord et al. (2018)
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VQ-VAE

* Vector Quantized VAE (VQ-VAE) learns a continuous
codebook, but the encoder outputs discrete codes

* Decoder takes a code and generates a sample
conditioned on it

Example: Generating Audio

Discrete

VQ latents
— J Condition
—1
Encoder / € »
Downsample 64x ———————— WaveNet
| Decoder

=\ [ e
L g

Figure from van den Oord et al. (2018)
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https://avdnoord.github.io/homepage/vqvae

¢ VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

* Samples from
this new
model can be
convincing
even at high-
fidelity

VQ-VAE

VQ-VAE Encoder and Decoder Training

Oeynd

(a) Overview of the architecture of our hierarchical
VQ-VAE. The encoders and decoders consist of
deep neural networks. The input to the model is a
256 x 256 image that is compressed to quantized
latent maps of size 64 x 64 and 32 x 32 for the
bottom and top levels, respectively. The decoder
reconstructs the image from the two latent maps.

Figure from Razavi et al. (2019)

(b) Multi-stage image generation. The top-level

PixelCNN prior is conditioned on the class label,

the bottom level PixelCNN is conditioned on the
class label as well as the first level code. Thanks
to the feed-forward decoder, the mapping between
latents to pixels is fast. (The example image with
a parrot is generated with this model).
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¢ VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

* Samples from
this new
model can be
convincing
even at high-
fidelity

Figure 4: Class conditional random samples. Classes from the top row are: 108 sea anemone, 109
. . brain coral, 114 slug, 11 goldfinch, 130 flamingo. 141 redshank, 154 Pekinese, 157 papillon, 97
Flgure from Razavi et al. (2019) drake, and 28 spotted salamander.



¢ VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

* Samples from
this new
model can be
convincing
even at high-
fidelity

Figure from Razavi et al.
(2019)
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¢ VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

* Samples from
this new
model can be
convincing
even at high-
fidelity

Figure from Razavi et al.
(2019)




¢ VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

* Samples from
this new
model can be
convincing
even at high-
fidelity

Figure from Razavi et al.
(2019)
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Semantic Segmentation

Input image Ground-truth

* Given animage,
predict a [abel for
every pixel in the
image

* Notmerelya
classification
problem, because
there are strong
correlations between
pixel-specific labels

{ 224x224 224x224

B

Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning Deconvolution_Network ICCV 2015 paper.pdf
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* Predict per-pixel labels as
in semantic segmentation,
but differentiate between
different instances of the
same label

* Example: if there are two
people in the image, one
person should be labeled
person-1 and one should
be labeled person-2

Figure 1. The Mask R-CNN framework for instance segmentation.

100
Figure from https://openaccess.thecvf.com/content ICCV _2017/papers/He_Mask R-CNN_ICCV_2017_paper.pdf



Contracting path
* block consists of:

3x3 convolution
3x3 convolution
RelLU

max-pooling with stride of 2
(downsample)

* repeat the block N times,

doubling number of channels

Expanding path
* block consists of:

2x2 convolution (upsampling)

concatenation with
contracting path features

3x3 convolution
3x3 convolution
RelLU

* repeat the block N times,
halving the number of
channels

input
image
tile

U-Net

64 64

12¢ 64 2
> ole || OUtPUL

N A s segmentation

20 2 & 7 map

=»conv 3x3, RelLU
copy and crop

¥ max pool 2x2
| 4 up-conv 2x2
3 = cONv 1x1
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* Originally designed
for applicationsto
biomedical
segmentation

* Key observation s

that the output
Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
Iayer 1ads the same “PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth

d im en Sion S as the (yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
. . (random colored masks) with manual ground truth (yellow border).
Input Image

(possibly with
different number
of channels)
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