10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Diffusion Models

Matt Gormley & Henry Chai
Lecture 8

Sep. 23,2024

Reminders

* Homework 1: Generative Models of Text
— Out: Mon, Sep 9
— Due: Mon, Sep 23 at 11:59pm
* Quiz 2:
— In-class: Wed, Sep 25
— Lectures 5-8

* Homework 2: Generative Models of Images
— Out: Mon, Sep 23
— Due: Mon, Oct 7 at 11:59pm

UNSUPERVISED LEARNING

Unsupervised Learning

Assumptions:

1. our data comes from some distribution
P*(Xo)

2. we choose a distribution pg(x,) for which
sampling x, ~ pg(X,) is tractable

Goal: learn 6 s.t. pg(X,) = p*(X,)

Unsupervised Learning

Assumptions: Example: autoregressive LMs

1. our data comes from some distribution * true p*(x,)is the (human) process that
p*(x,) produced text on the web

2. we choose a distribution pg(x,) for which * choose pg(x,) to be an autoregressive
sampling x, ~ pg(X,) is tractable language model

Goal: learn 6 s.t. pg(X,) = p*(X,) — autoregressive structure means that

p(x; | x,, ..., X¢,) ~ Categorical(.) and
ancestral sampling is exact/efficient
* learn by finding
e=togom () O = argmaxg log(pe(X,))
using gradient based updates on
Ve Iog(pe(xo))

fl('r')]

| T\
L

T=p w.lh,) T:p W;Y Tf p(w|h,)
h, A
{

Unsupervised Learning

Assumptions:

1. our data comes from some distribution .
p*(X,)

2. we choose a distribution pg(x,) for which .

sampling x, ~ pg(X,) is tractable
Goal: learn 6 s.t. pg(X,) = p*(X,)

Dg(x)

p(real | image)

y J=log(1- Dy(Gu(2)))
0 / 0\‘

Dy(x’)
p(real | image) \

y J =log(Dy(x"))
1 /

fake image

X'~ pdata(')

¥

real image

so optimize a minimax loss instead

Example: GANs

true p*(x,) is distribution over photos taken
and posted to Flikr

choose pg(x,) to be an expressive model
(e.g. noise fed into inverted CNN) that can
generate images
— sampling is typically easy:
z ~N(0, 1) and x, = fg(2)
learn by finding 6 = argmaxg log(pe(x,))?
— No! Because we can’t even compute
log(pe(x,)) or its gradient

— Why not? Because the integral is
intractable even for a simple 1-hidden
layer neural network with nonlinear
activation

o) = / p(xo | 2)p(z)dz

Unsupervised Learning

Assumptions: Example: VAEs [Diffusion Models

1. our data comes from some distribution * true p*(x,) is distribution over photos taken
p*(x,) and posted to Flikr

2. we choose a distribution pg(x,) for which * choose pg(x,) to be an expressive model
sampling x, ~ pg(X,) is tractable (e.g. noise fed into inverted CNN) that can

Goal: learn 6 s.t. pg(X,) = p*(X,) generate images

— sampling is will be easy
* learn by finding © = argmaxg log(pe(x,))?
— Sort of! We can’t compute the gradient

Ve log(pe(Xo))
— So we instead optimize a variational
po(xXe—1|xt)
>@ ; @ o 50 lower bound (more on that later)

Dite et i | -
qixe|Xe—1) 9 | ~

Figure from Ho et al. (2020)

Latent Variable Models

 For GANs and VAEs,
we assume that there
are (unknown) latent
variables which give
rise to our
observations

e The vector z are those
[atent variables

* Afterlearning a GAN
or VAE, we can
interpolate between

images in latent z

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space

S p ace learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

Figure from Radford et al. (2016)

U-NET

Semantic Segmentation

Input image Ground-truth

* Given animage,
predict a [abel for
every pixel in the
image

* Notmerelya
classification
problem, because
there are strong
correlations between
pixel-specific labels

{ 224x224 224x224

B

Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning Deconvolution_Network ICCV 2015 paper.pdf

12

* Predict per-pixel labels as
in semantic segmentation,
but differentiate between
different instances of the
same label

* Example: if there are two
people in the image, one
person should be labeled
person-1 and one should
be labeled person-2

Figure 1. The Mask R-CNN framework for instance segmentation.

Figure from https://openaccess.thecvf.com/content ICCV _2017/papers/He_Mask R-CNN_ICCV_2017_paper.pdf

13

Contracting path
* block consists of:

3x3 convolution
3x3 convolution
RelLU

max-pooling with stride of 2
(downsample)

* repeat the block N times,

doubling number of channels

Expanding path
* block consists of:

2x2 convolution (upsampling)

concatenation with
contracting path features

3x3 convolution
3x3 convolution
RelLU

* repeat the block N times,
halving the number of
channels

input
image
tile

U-Net

64 64

12¢ 64 2
> ole || OUtPUL

N A s segmentation

20 2 & 7 map

=»conv 3x3, RelLU
copy and crop

¥ max pool 2x2
| 4 up-conv 2x2
3 = cONv 1x1

14

* Originally designed
for applications to
biomedical
segmentation

* Key observation s
that the output
layer has the same
dimensions as the
iInput image
(possibly with
different number
of channels)

a

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

DIFFUSION MODELS

Diffusion Mod

» Next we will consider (1) diffusion mq The standard presentation

variational autoencoders (VAEs)
— Although VAEs came first, we’re going tc

models since they will receive more of o

* The steps in defining these models is
— Define a probability distribution involvin
— Use a variational lower bound as an obj

— Learn the parameters of the probaw
the objective function

e So what s a variational lower bound?

of diffusion models
requires an understanding
of variational inference.
(we’ll do that next time)

Today, we’ll do an
alternate presentation
without variational
inference!

Diffusion Model

@ @ Y @ s W

q(x0)

94 (XT | X7_1) q¢(Xt+1 | X¢) q¢(x1 | X0)
Forward Process: (Exact) Reverse Process:
T T
gy (X0:7) = (X0 H (x¢ | x¢—1) gs(x0.7) = qp(x7) | [0o (xe—1 | x¢)
t=1 t=1

The exactreverse process requires inference. And,
even though ¢4 (x; | x¢—1) is simple, computing
qs(X¢—1 | X¢) is intractable! Why? Because g(xo)
might be not-so-simple.

fXO:t—2,t—|—1:T q¢ (XO:T>dXO:t—2,t—|—1:T

fxoj_Q,t:T q¢(X0:T)dX0:t—2,t:T

Q¢(Xt—1 ! Xt) =

Diffusion Model

po(x7-1 | XT) po(Xt | Xt41) po(Xo | X1)

¢ (x7 | X7_1) qo(Xe+1 | Xt) qs(x1 | X0)
Forward Process: (Exact) Reverse Process:
T T
gy (X0:7) = (X0 H (x¢ | x¢—1) gs(x0.7) = qp(x7) | [0o (xe—1 | x¢)
t=1 t=1

The exactreverse process requires inference. And,
even though ¢4 (x; | x¢—1) is simple, computing
qs(X¢—1 | X¢) is intractable! Why? Because g(xo)
might be not-so-simple.

(Learned) Reverse Process:
T

po(x0.r) = po(x7) | [po(xi—1 | %)

t=1 fXO:t—2,t—|—1:T q¢(XOZT>dXO:t—2,t—|—1:T

fxoj_Q,t:T q¢(X0:T)dX0:t—2,t:T

qp(Xi—1 | X¢) =

Diffusion Model

po(X7—1 | X7) po (Xt | Xeq1) Po(Xo | X1)

adds noiseto ~--~ A e T ~=7 Te=oT T == q(x0)
theimage (xr | x7_1) o (Xet1 | X¢t) gy (X1 | Xo)
if we could sample
Forward Process: from this we’d be done (Exact) Reverse Process:
T T
v
q(X0:7) = q(X0) 1 o (Xt | Xt—1) ¢ (X0.:1) = qo(XT) H qg(Xe—1 | X¢)
The exactreverse process requires inference. And,
even though ¢4 (x; | x¢—1) is simple, computing
(Learned) Reverse Process: removes noise qs(X¢—1 | x¢) is intractable! Why? Because ¢(xo)
r might be not-so-simple.
po(Xo.1) = po(XT) Hpe(Xt—1 | X¢)
e fXO:t—2,t—|—1:T q¢(X0.7)dX0:t—2,¢4+1:T

qp(Xi—1 | X¢) =

goal is to learn this fxo:t—2,t:T 9g (X0:7)dX0:t—2,1:

Diffusion Model

po(XT—1 | XT) po (Xt | Xeq1) Po(Xo | X1)

Q¢(XT | XT—1) q¢(xt+1 \ Xt) C]qb(Xl \ Xo)

e ol BEEF R —— ' -
bt . -~
s p . : -

BlNENNENNSSssrrrrrrr
...‘Q--~R1YK%¥V¥VYV¥

21
Figure from Ho et al. (2020)

Diffusion Model

po(XT—1 | XT) po (Xt | Xeq1) Po(Xo | X1)

HIIIIIHEEEEEEE
.-.I Question: Answer:
Which are the latent variables in
...‘ a diffusion model? -.

22

Figure from Ho et al. (2020)

Denoising Diffusion Probabilistic Model (DDPM)

po(X7—1 | X7) po (Xt | Xeq1) Po(Xo | X1)
Po (XT)

9o (X7 | X7-1) Qo (Xey1 | X¢) qs (X1 | X0)

Forward Process:

q(x¢) = data distribution

g (Xt | Xp—1) ~ N(Varxi—1, (1 — ay)T)

T
q¢ XOT —C]XOH Xt’th

(Learned) Reverse Process:
T

pQ(XT) ~ N(Ovl)

po(Xo:1) = po(Xr) tl;[lpﬁ(xt—l | %) po(Xe—1 | X¢) ~ N (po(xe,t), Bo(xe, 1))

Defining the Forward Process

Noise schedule:

We choose a; to follow a fixed schedule s.t.
qs(x7) ~ N(0,1), just like pp(x7).

1.0 1 —— linear
0.8
0.6 1

0.4 4

0.2 1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

Gaussian (an aside)
Let X NN(M%70-5213) and Y NN(M?J7O§)

Gaussian (an aside)
Let X NN(FLx?O-:%) and Y NN(M?/7O-§)

1. Sum of two Gaussians is a Gaussian

X"‘YNN(Nx"‘NyvOi""U;)

2. Difference of two Gaussians is a Gaussian

X_YNN(M:B_N?J?U;“’_U::%)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z~ Ny =X,02) = P(Z | X) ~N(,")

Defining the Forward Process

Forward Process:
q(x¢) = data distribution

o (Xt | Xp—1) ~ N(Varxi—1, (1 — ay)T)

T
%(XOT —QXO H Xt’Xt 1

Noise schedule: Property #1:

We choose a; to follow a fixed schedule s.t. a(%, | %0) ~ N(v/asxo, (1 — &,)T)
qs(x7) ~ N(0,1), just like pg(x7). ,
where a; = H Qg

1.0 4 —— linear

cosine

0.8 1

Q: So what is q4(xr | X,) ? Note the capital T in the
subscript.

0.6 1

0.4 4

A:

0.2 4

0.0 1 =

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

Diffusion Model

po(x7-1 | XT) po(Xt | Xt41) po(Xo | X1)

G (X7 | X7_1) Qo (Xtt1 | X¢) qo(x1 | X0)

Q: If g4 is just adding noise, how can pg be interesting
at all?

T
q¢(X0:7) = q(X0 H (x¢ | x¢-1) A:

Forward Process:

(Learned) Reverse Process: Q: But if pg(x;_1|x;) is Gaussian, how can it learn a @
T such that pg(x9) ~ ¢q(x¢)? Won’t py(xg) be Gaussian
Po(X0.7) = po(X7) Hpe (x¢—1 | X¢) too?

t=1 A:

Gaussian (an aside)
Let X NN(FLx?O-:%) and Y NN(M?/7O-§)

1. Sum of two Gaussians is a Gaussian

X"‘YNN(Nx"‘NyvOi""U;)

2. Difference of two Gaussians is a Gaussian

X_YNN(M:B_N?J?U;“’_U::%)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z~ Ny =X,02) = P(Z | X) ~N(,")

Gaussian (an aside)
Let X NN(,LLx7O-:%) and Y NN(M?/7O-Z)

1. Sum of two Gaussians is a Gaussian

X"‘YNN(Nx"‘NyvOi""U;)

2. Difference of two Gaussians is a Gaussian

X_YNN(Mw_Uyaaz"i‘U;)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z~ Ny =X,02) = P(Z | X) ~N(,")

4. But #3 does not hold if X is passed through a nonlinear function f

WNN(Mz:f(X)aaf?u)#P(W|X)NN(’)

Diffusion Model

po(x7-1 | XT) po(Xt | Xt41) po(Xo | X1)

G (X7 | X7_1) Qo (Xtt1 | X¢) qo(x1 | X0)

Q: If g4 is just adding noise, how can pg be interesting
at all?

T
q¢(X0:7) = q(X0 H (x¢ | x¢-1) A:

Forward Process:

(Learned) Reverse Process: Q: But if pg(x;_1|x;) is Gaussian, how can it learn a @
T such that pg(x9) ~ ¢q(x¢)? Won’t py(xg) be Gaussian
Po(X0.7) = po(X7) Hpe (x¢—1 | X¢) too?

t=1 A:

10N

iffusi

D

Model
Analogy

<
mMm

Properties of forward and exact reverse processes

this is the same reparameterization trick from VAEs

36

Properties of forward and exact reverse processes

37

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Later we will show that given a train-
ing sample xq, we want

.Pe(Xt—l |Xt)

to be as close as possible to

Q(Xt—l ‘ Xt XO)

Intuitively, this makes sense: if the
learned reverse processis supposed

to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Idea #1: Rather than learn ¥y (x;,t) just use what we

Later we will show that given a train-
know about g(x;_1 | x¢,%xg) ~ N(,021):

ing sample xq, we want

D t) = o1
el | 5 o(Xi,t) = 0,

to be as close as possible to Idea #2: Choose g based on ¢(x:—1 | x¢,Xg), i.e. we
want ug(x¢,t) to be close to fi,(x¢, X0). Here are
q(x¢—1 | X¢,X0) three ways we could parameterize this:

Option A: Learnanetwork thatapproximates i, (x;, Xo)

Intuitively, this makes sense: if the :
directly from x; and ¢:

learned reverse processis supposed

to subtract away the noise, then

) y the ~ 1o (x¢,t) = UNety(xy, t)
whenever we’re working with a spe-
cific xq it should subtract it away where t is treated as an extra feature in UNet

exactly as exact reverse process would
have.

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Idea #1: Rather than learn Yy (x¢,?) just use what we

Later we will show that given a train- ,
know about ¢(x;_1 | x¢,%g) ~ N(,oi1):

ing sample xq, we want

¥ +) = o1
po(Xi_1 | %) o(X,t) = 0

to be as close as possible to Idea #2: Choose iy based on g(x;_1 | x¢,Xq), i.e. we
want g (x¢, t) to be close to i, (x¢, X0). Here are
q(X¢t—1 | X¢,%o) three ways we could parameterize this:

Option B: Learnanetworkthatapproximatesthe

Intuitively, this makes sense: if the
real xg from only x; and ¢:

learned reverse processis supposed
to subtract away the noise, then (0)_(0) (t)
whenever we’re working with a spe- o (Xe:t) = 07X (X1,) + g
cific xq it should subtract it away where xéo) (x¢,t) = UNetg(x¢, 1)
exactly as exact reverse process would

have.

Properties of forward and exact reverse processes

Property #1:
q(x¢ | x0) ~ N (Vauixo, (1 — a)I)

t
where a; = H Qg
s=1

= we can sample x; from x(at any timestep ¢
efficiently in closed form

= x; = /X + (1 — a;)e where € ~ N(0,1)

Property #2: Estimating q(x;_1 | x;) isintractable
because of its dependence on ¢(x(). However,
conditioning on xy we can efficiently work with:

q(x¢—1 | X¢,%0) = N (fig(x¢,X0), 071)

— -
where fio (x1. x0) = \/ozif(= Oét)XO N \/ozi(= ozt)xt
- e - e

(0)

t
= oy "X —|—a§)xt

o2 (1—a1)(1 — o)
¢ 1— ay

Property #3: Combining the two previous prop-
erties, we can obtain a different parameteriza-
tion of [, which has been shown empirically to
help in learning py.

Rearranging x; = v/a;Xo + /1 — o€ we have
that:

xo = (X — VI=Gze) /v/a

Substituting this definition of x into property
#2’s definition of /i, gives:

fiq(X¢,X0) = ago)xo + agt)xt

— ago) ((Xt — 1 - o‘zte) /\/67t) + oz,gt)xt

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Later we will show that given a train-
ing sample xq, we want

pe(Xt—l | Xt)

to be as close as possible to

Q(Xt—l ‘ Xt XO)

Intuitively, this makes sense: if the
learned reverse processis supposed

to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

Idea #1: Rather than learn Xy (x;,t) just use what we

know about ¢(x;_1 | x¢,%xg) ~ N{(,o21):

EQ(Xt,t) = 0'752]:

Idea #2: Choose g based on g(x;_1 | x¢,Xg), i.e. we

want pg(x¢, t) to be close to fi,(x¢,xg). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximatesthe
e that gaverise to x; from xg in the forward
process from x; and ¢:

o (Xs,t) = ago)xéo) (x¢,1) + ozit)xt

where X(QO) (x¢,1) = (Xt — V1 — azeg(xy, t)) /

where €y(x;,t) = UNetg(xy, t)

Ol

. Depending on which of
Learning the Reverse Process theoptionsfor
parameterization we pick,
we get a different
training algorithm.
Later we will show that given a train-

ing sample x(, we want Algorithm 1 Training (Option A, all timesteps)
1: initialize 0
Po(Xi—1 | Xt) » forec {1,...,E}do

3: forzg € Ddo
fort € {1,...,7T} do
e ~N(0,I)

X; < /Xg + /1 — aqe€
quai)X +oz()
ACIRN TP ue(Xt, t)

0 60—Vo>,_ (0)

to be as close as possible to

Q(Xt—l ‘ Xt XO)

Intuitively, this makes sense: if the
learned reverse processis supposed
to subtract away the noise, then

I®

2 9N 2V H

whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

