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Front Matter
� Announcements: 

� HW2 released 9/23 9/24, due 10/7 at 11:59 PM

� Quiz 2 moved to 9/30 (Monday)  

9/25/24 2



DIFFUSION MODELS
Recap of…
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U-Net
Contracting path
• block consists of:

– 3x3 convolution
– 3x3 convolution
– ReLU
– max-pooling with stride of 2 

(downsample)
• repeat the block N times, 

doubling number of channels

Expanding path
• block consists of:

– 2x2 convolution (upsampling)
– concatenation with 

contracting path features
– 3x3 convolution
– 3x3 convolution
– ReLU

• repeat the block N times, 
halving the number of 
channels
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xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT

Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

(Learned) Reverse Process:

pθ(x0:T ) = pθ(xT )

T∏

t=1

pθ(xt−1 | xt)

Diffusion Model
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if we could sample 
from this we’d be done

adds noise to 
the image

removes noise

goal is to learn this

(Exact) Reverse Process:

qφ(x0:T ) = qφ(xT )

T∏

t=1

qφ(xt−1 | xt)

The exact reverseprocess requires inference. And,
even though qφ(xt | xt−1) is simple, computing
qφ(xt−1 | xt) is intractable! Why? Because q(x0)
might be not‐so‐simple.

qφ(xt−1 | xt) =

∫
x0:t−2,t+1:T

qφ(x0:T )dx0:t−2,t+1:T
∫

x0:t−2,t:T
qφ(x0:T )dx0:t−2,t:T



Diffusion Model

6
Figure from Ho et al. (2020) 

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Denoising Diffusion Probabilistic Model (DDPM)
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Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

(Learned) Reverse Process:

pθ(x0:T ) = pθ(xT )

T∏

t=1

pθ(xt−1 | xt)

q(x0) = data distribution
qφ(xt | xt−1) ∼ N (

√
αtxt−1, (1− αt)I)

pθ(xT ) ∼ N (0, I)
pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Gaussian (an aside)
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LetX ∼ N (µx,σ
2

x
) and Y ∼ N (µy,σ

2

y
)

1. Sum of two Gaussians is a Gaussian

X + Y ∼ N (µx + µy,σ
2

x
+ σ2

y
)

2. Difference of two Gaussians is a Gaussian

X − Y ∼ N (µx − µy,σ
2

x
+ σ2

y
)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z ∼ N (µz = X,σ2

z
) ⇒ P (Z | X) ∼ N (·, ·)

4. But #3 does not hold ifX is passed through a nonlinear function f

W ∼ N (µz = f(X),σ2

w
) ! P (W | X) ∼ N (·, ·)



Noise schedule:

We choose αt to follow a fixed schedule s.t.
qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Defining the Forward Process
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Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)
q(x0) = data distribution

qφ(xt | xt−1) ∼ N (
√
αtxt−1, (1− αt)I)

Q: So what is q𝜙(xT | x0) ? Note the capital T in the 
subscript.

A:

Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

q(xT | x0) ∼ N (µ ≈ 0,Σ ≈ I)



Gaussian (an aside)
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LetX ∼ N (µx,σ
2

x
) and Y ∼ N (µy,σ

2

y
)

1. Sum of two Gaussians is a Gaussian

X + Y ∼ N (µx + µy,σ
2

x
+ σ2

y
)

2. Difference of two Gaussians is a Gaussian

X − Y ∼ N (µx − µy,σ
2

x
+ σ2

y
)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z ∼ N (µz = X,σ2

z
) ⇒ P (Z | X) ∼ N (·, ·)

4. But #3 does not hold ifX is passed through a nonlinear function f

W ∼ N (µz = f(X),σ2

w
) ! P (W | X) ∼ N (·, ·)



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.



Properties of forward and exact reverse processes
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Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 + (1− ᾱt)ϵwhere ϵ ∼ N (0, I)

Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt

Property #3: Combining the two previous prop‐
erties, we can obtain a different parameteriza‐
tion of µ̃q which has been shown empirically to
help in learning pθ.

Rearranging xt =
√

ᾱtx0 +
√

1− ᾱtϵ we have
that:

x0 =
(

xt −

√

1− ᾱtϵ

)

/
√

ᾱt

Substituting this definition of x0 into property
#2’s definition of µ̃q gives:

µ̃q(xt, x0) = α
(0)
t x0 + α

(t)
t xt

= α
(0)
t

((

xt −

√

1− ᾱtϵ

)

/
√

ᾱt

)

+ α
(t)
t xt

=
1

√

αt

(

xt −
(1− αt)
√

1− ᾱt

ϵ

)



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Idea #1: Rather than learnΣθ(xt, t) just usewhat
weknowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2

t I):

Σθ(xt, t) = σ2

t I

Idea #2: Chooseµθ basedon q(xt−1 | xt, x0), i.e.
wewantµθ(xt, t) to be close to µ̃q(xt, x0). Here
are three ways we could parameterize this:

OptionC:Learnanetwork that approximates theϵ that
gave rise to xt from x0 in the forward process from xt

and t:

µθ(xt, t) = α
(0)
t x(0)

θ
(xt, t) + α

(t)
t xt

where x(0)
θ

(xt, t) =
(

xt −

√

1− ᾱtϵθ(xt, t)
)

/
√

ᾱt

where ϵθ(xt, t) = UNetθ(xt, t)

Option B: Learn a network that approximates the real
x0 from only xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ
(xt, t) + α

(t)
t xt

where x(0)
θ

(xt, t) = UNetθ(xt, t)

OptionA:Learnanetwork that approximates µ̃q(xt, x0)
directly from xt and t:

µθ(xt, t) = UNetθ(xt, t)

where t is treated as an extra feature in UNet



DIFFUSION MODEL TRAINING
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Learning the Reverse Process
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Depending on which of the 
options for parameterization we 
pick, we get a different training 
algorithm. OptionA:Learnanetwork that approximates µ̃q(xt, x0)

directly from xt and t:

µθ(xt, t) = UNetθ(xt, t)

where t is treated as an extra feature in UNet

Recall: given a training sample x0,
we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Algorithm 1 Training (Option A, all timesteps)
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0 ∈ D do
4: for t ∈ {1, . . . , T} do
5: ϵ ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtϵ

7: µ̃q ← α
(0)
t x0 + α

(t)
t xt

8: ℓt(θ)← ∥µ̃q − µθ(xt, t)∥2

9: θ ← θ −∇θ

∑T

t=1 ℓt(θ)



Learning the Reverse Process
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Algorithm 1 Training (Option A)
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0 ∈ D do
4: t ∼ Uniform(1, . . . , T )
5: ϵ ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtϵ

7: µ̃q ← α
(0)
t x0 + α

(t)
t xt

8: ℓt(θ)← ∥µ̃q − µθ(xt, t)∥2
9: θ ← θ −∇θℓt(θ)

OptionA:Learnanetwork that approximates µ̃q(xt, x0)
directly from xt and t:

µθ(xt, t) = UNetθ(xt, t)

where t is treated as an extra feature in UNet

Depending on which of the 
options for parameterization we 
pick, we get a different training 
algorithm. 

Recall: given a training sample x0,
we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)



Learning the Reverse Process

17

Algorithm 1 Training (Option B)
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0 ∈ D do
4: t ∼ Uniform(1, . . . , T )
5: ϵ ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtϵ

7: ℓt(θ)← ∥x0 − x(0)
θ

(xt, t)∥2
8: θ ← θ −∇θℓt(θ)

Option B: Learn a network that approximates the real
x0 from only xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ
(xt, t) + α

(t)
t xt

where x(0)
θ

(xt, t) = UNetθ(xt, t)

Depending on which of the 
options for parameterization we 
pick, we get a different training 
algorithm. 

Recall: given a training sample x0,
we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)



Learning the Reverse Process
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Algorithm 1 Training (Option C)
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0 ∈ D do
4: t ∼ Uniform(1, . . . , T )
5: ϵ ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtϵ

7: ℓt(θ)← ∥ϵ− ϵθ(xt, t)∥2
8: θ ← θ −∇θℓt(θ)

Option C is the best 
empirically

OptionC:Learnanetwork that approximates theϵ that
gave rise to xt from x0 in the forward process from xt

and t:

µθ(xt, t) = α
(0)
t x(0)

θ
(xt, t) + α

(t)
t xt

where x(0)
θ

(xt, t) =
(

xt −

√

1− ᾱtϵθ(xt, t)
)

/
√

ᾱt

where ϵθ(xt, t) = UNetθ(xt, t)

Depending on which of the 
options for parameterization we 
pick, we get a different training 
algorithm. 

Recall: given a training sample x0,
we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)



Training (Computation Graph)
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Sampling from the learned reverse process
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Algorithm 1 Sampling
1: xT ∼ pθ(xT )
2: for t ∈ {T, . . . , 1} do
3: xt−1 ∼ p(xt−1 | xt)

4: return x0

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Sampling from the learned reverse process
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Algorithm 1 Sampling
1: xT ∼ N (0, I)
2: for t ∈ {T, . . . , 1} do
3: xt−1 ∼ N (µθ(xt, t),Σθ(xt, t))

4: return x0

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Sampling from the learned reverse process

23

Algorithm 1 Sampling (Option A)
1: xT ∼ N (0, I)
2: for t ∈ {T, . . . , 1} do
3: ϵ ∼ N (0, I)
4: xt−1 ← µθ(xt, t) + σtϵ

5: return x0

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Sampling from the learned reverse process

24

Algorithm 1 Sampling (Option B)
1: xT ∼ N (0, I)
2: for t ∈ {T, . . . , 1} do
3: ϵ ∼ N (0, I)
4: µ̂t ← α

(0)
t x(0)

θ
(xt, t) + α

(t)
t xt

5: xt−1 ← µ̂t + σtϵ

6: return x0

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Sampling from the learned reverse process
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Algorithm 1 Sampling (Option C)
1: xT ∼ N (0, I)
2: for t ∈ {T, . . . , 1} do
3: ϵ ∼ N (0, I)
4: x̂0 ←

(

xt −
√
1− ᾱtϵθ(xt, t)

)

/
√
ᾱt

5: µ̂t ← α
(0)
t x̂0 + α

(t)
t xt

6: xt−1 ← µ̂t + σtϵ

7: return x0

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

p*(x0)
2. we choose a distribution pθ(x0) for which 

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

Example: Diffusion Models
• true p*(x0) is distribution over photos taken 

and posted to Flikr
• choose pθ(x0) to be an expressive model 

(e.g. noise fed into inverted CNN) that can 
generate images
– sampling is will be easy

• learn by finding θ ≈ argmaxθ log(pθ(x0))?
– Sort of! We can’t compute the gradient  
∇θ log(pθ(x0))

– So we instead optimize a variational 
lower bound (more on that later)

 

 26
Figure from Ho et al. (2020) 



DDPM Objective Function
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L = 

Equations from Ho et al. (2020) 

This KL divergence term Lt-1 
wants the two conditional 

distributions to be as close as 
possible.



Connections between VAE and Diffusion
Variational Autoencoder Denoising Diffusion Probabilistic 

Model

29



� Task: at test time, make predictions about labels or 

classes that were not observed during training

� Relevant in settings with many, potentially rare 
classes or where new classes arise over time

� How can we 
possibly do well in 

this setting???

� Idea: cheat!

Zero-shot 
Learning

9/25/24 30Source: https://cdn.aaai.org/AAAI/2008/AAAI08-103.pdf 

https://cdn.aaai.org/AAAI/2008/AAAI08-103.pdf


Zero-shot 
Learning

9/25/24 31Source: https://cdn.aaai.org/AAAI/2008/AAAI08-103.pdf 

� Task: at test time, make predictions about labels or 

classes that were not observed during training

� Relevant in settings with many, potentially rare 
classes or where new classes arise over time

� How can we 
possibly do well in 

this setting???

� Idea: cheat! 

leverage a 
“description of the 
label”, 𝑑 𝑧

https://cdn.aaai.org/AAAI/2008/AAAI08-103.pdf


� Task: at test time, make predictions about labels or 

classes that were not observed during training

� Relevant in settings with many, potentially rare 
classes or where new classes arise over time

� Train a score function on 
(input, description) pairs 

𝑓 𝑥 ! , 𝑑 𝑧 "  that is high 

for the true label’s description 
and low otherwise.

� At test time, predict the label 
with the highest scoring 

description

Zero-shot 
Learning

9/25/24 32Source: https://cdn.aaai.org/AAAI/2008/AAAI08-103.pdf 

https://cdn.aaai.org/AAAI/2008/AAAI08-103.pdf


Zero-shot 
Learning

9/25/24 33

� Task: at test time, make predictions about labels or 

classes that were not observed during training

� Relevant in settings with many, potentially rare 
classes or where new classes arise over time

� Traditional zero-shot learning methods typically 
require access to “semantic” or “auxiliary” 

information about both seen and unseen classes e.g., 
manually-defined attributes or raw text descriptions



� Task: at test time, make predictions about labels or 

classes that were barely observed during training

� Typically refers to settings with fewer than 5 
instances of each class

� Idea: learn a low-dimensional embedding for the inputs 
and do some 𝑘NN style prediction in the latent spaceFew-shot 

Learning

9/25/24 34Source: https://dl.acm.org/doi/10.1145/3386252 

https://dl.acm.org/doi/10.1145/3386252


� Task: at test time, make predictions about labels or 

classes that were barely observed during training

� Typically refers to settings with fewer than 5 
instances of each class

� Idea: data augmentation = create more (potentially bad, 
potentially irrelevant, potentially wrong) training inputsFew-shot 

Learning

9/25/24 35Source: https://dl.acm.org/doi/10.1145/3386252 

https://dl.acm.org/doi/10.1145/3386252


� Task: at test time, make predictions about labels or 

classes that were barely observed during training

� Typically refers to settings with fewer than 5 
instances of each class

� Idea: just throw a neural network LLM at it?

Few-shot 
Learning

9/25/24 36



Zero-shot 
Learning with 
LLMs

� Recall: language models are trained to maximize the 

likelihood of sequences in the training data

� Key idea: provide a prefix sequence or “prompt” to the 
(large) language model such that its likely completion is 

the answer you want!

� Can do conditional sampling from the model’s learned 

distribution over next tokens to generate completions: 

𝑝 𝑥#$%	|	PROMPT = 𝑥%, … , 𝑥#

9/25/24 37



� Question answering (“entailment”)

Zero-shot 
Learning with 
LLMs: Example

9/25/24 38

Rhodochiton is a genus of flowering 
plants within the family 
Plantaginaceae, native to southern 
Mexico and neighbouring 
Guatemala. They climb by means of 
twining leaf stalks. One of the three 
species, "Rhodochiton 
atrosanguineus", the purple bell 
vine, is grown as an ornamental 
plant. All three species are 
sometimes included in 
"Lophospermum".

Question: You can find the purple 
bell vine in more than one country. 
True, False, or Neither?

True.

Answer: True.

Explanation: The purple bell vine 
(Rhodochiton atrosanguineus) is 
native to southern Mexico and 
neighbouring Guatemala, which 
means it can be found in more than 
one country.

Prompt:

Correct answer:

Model output (Llama-2-70B):

Source: https://huggingface.co/datasets/facebook/anli 

https://huggingface.co/datasets/facebook/anli


� Summarization

Zero-shot 
Learning with 
LLMs: Example

9/25/24 39

Story: Jason listened to the weather 
and heard it was going to be sunny. 
He thought the kids might like to go 
swimming. He gathered up the 
swimsuits, towels and sunscreen. 
Jason and the kids got into the truck 
and drove to the beach. They spent 
the next 2 hours playing and 
splashing in the surf.

One-sentence Summary:

Jason took the kids swimming at the 
beach after hearing the weather 
forecast, gathering necessary items 
and driving there.

Prompt: Model output (Llama-2-70B):

Source: https://arxiv.org/pdf/1910.00998.pdf 

https://arxiv.org/pdf/1910.00998.pdf


� Machine translation

Zero-shot 
Learning with 
LLMs: Example

9/25/24 40

El último dueño de esta propiedad 
había sido un hombre soltero, que 
alcanzó una muy avanzada edad, y 
que durante gran parte de su 
existencia tuvo en su hermana una 
fiel compañera y ama de casa.

English translation:

The late owner of this estate was a 
single man, who lived to a very 
advanced age, and who for many 
years of his life, had a constant 
companion and housekeeper in his 
sister.

The last owner of this property was a 
bachelor man who lived to a very 
advanced age, and who had his sister 
as a faithful companion and 
housekeeper for most of his life.

Prompt:

Correct answer 
(from Sense & Sensibility):

Model output (Llama-2-70B):

Source: https://huggingface.co/datasets/opus_books/viewer/en-es 

https://huggingface.co/datasets/opus_books/viewer/en-es


� Machine translation

How is this 
possible? Why 
does this work?

9/25/24 41

El último dueño de esta propiedad 
había sido un hombre soltero, que 
alcanzó una muy avanzada edad, y 
que durante gran parte de su 
existencia tuvo en su hermana una 
fiel compañera y ama de casa.

English translation:

The late owner of this estate was a 
single man, who lived to a very 
advanced age, and who for many 
years of his life, had a constant 
companion and housekeeper in his 
sister.

The last owner of this property was a 
bachelor man who lived to a very 
advanced age, and who had his sister 
as a faithful companion and 
housekeeper for most of his life.

Prompt: Model output (Llama-2-70B):

Source: https://huggingface.co/datasets/opus_books/viewer/en-es 

Correct answer 
(from Sense & Sensibility):

https://huggingface.co/datasets/opus_books/viewer/en-es


Zero-shot 
Learning with 
LLMs: Intuition

� Many NLP tasks appear (in some form) on the internet/in 

the training datasets for these LLMs

9/25/24 42Source: https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf 

https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf


Zero-shot 
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� Many NLP tasks appear (in some form) on the internet/in 

the training datasets for these LLMs

� Zero-shot performance is highly dependent on model size
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• Answer fact-based questions:

• Complete sentences logically:

• Complete analogies:

• Reading comprehension:

Source: https://arxiv.org/pdf/2005.14165 

https://arxiv.org/pdf/2005.14165


Okay so clearly 
there’s lots of 
examples of 
these: why are 
we doing zero-
shot learning in 
the first place?
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• Complete sentences logically:

• Complete analogies:
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� Suppose you have…

1. a small labelled dataset (i.e., a few-shot setting), 𝒟

2. a very large pre-trained language model

� There are two ways to “learn”:

A. Supervised fine-tuning i.e., updating the LLM’s 
parameters using

1. a standard supervised objective

2. backpropagation to compute gradients

3. your favorite optimizer (e.g., Adam) 

� Con: backpropagation requires ~3x the memory and 
computation time as the forward computation

� Con: you might not have access to the model parameters
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� Suppose you have…

1. a small labelled dataset (i.e., a few-shot setting), 𝒟

2. a very large pre-trained language model

� There are two ways to “learn”:

B. In-context learning i.e., feeding the training dataset to the 
LLM as a prompt and taking the output as a prediction

� the LLM (hopefully) infers patterns in the training 
dataset during inference (i.e., decoding)

� Pro: no backpropagation required and only one pass 
through the training dataset per test example

� Pro: does not require access to the model parameters, 

only API access to the model itself
� Con: the prompt may be very long and Transformer LMs 

require 𝑂(𝑁2)	time/space where 𝑁 = length of context



� Standard setup: a set of input/output pairs from a 

training dataset are presented in sequence to an LLM, 
typically along with a plain-text task description

Few-shot 
Learning via
In-context 
Learning with 
LLMs
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� In-context learning is surprisingly sensitive to…

1. the order the training examples are presented in

Source: http://arxiv.org/abs/2104.08786 

http://arxiv.org/abs/2104.08786
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� In-context learning is surprisingly sensitive to…

1. the order the training examples are presented in

2. label imbalance (e.g. # of positive vs. # of negative)

Source: https://aclanthology.org/2022.emnlp-main.622.pdf 

https://aclanthology.org/2022.emnlp-main.622.pdf
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� In-context learning is surprisingly sensitive to…

1. the order the training examples are presented in

2. label imbalance (e.g. # of positive vs. # of negative)

3. the number of unique labels in the training dataset

Source: https://aclanthology.org/2022.emnlp-main.622.pdf 

https://aclanthology.org/2022.emnlp-main.622.pdf
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� In-context learning is surprisingly insensitive to…

1. the correctness of the labels!
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� In-context learning is surprisingly insensitive to…

1. the correctness of the labels!

2. the amount of training data used in the prompt!
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� In-context learning is surprisingly insensitive to…

1. the correctness of the labels!

2. the amount of training data used in the prompt!
So why does 
this work? Why 
is it better than 
zero-shot 
learning?
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� Min et al. (2022) identified four meaningful factors:

� Another potentially meaningful aspect of in-context 
learning: what exactly are we asking the LLM? 

Few-shot 
In-context 
Learning with 
LLMs
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Prompt 
Engineering

� Not all prompts are equally good! 

� Example: zero-shot news article classification using 
OPT-175B on the AG News dataset

� What affects the accuracy associated with using a prompt?

� One potential answer: how likely the prompt is under the 
learned model’s implied distribution over sequences
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� Not all prompts are equally good! 

� Example: zero-shot news article classification using 
OPT-175B on the AG News dataset

� Perplexity is the 

exponentiated 
average negative 

log-likelihood of a 
sequence

� Lower perplexity = 
higher likelihood

Prompt 
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Learning to 
Prompt

� Some ways of learning better prompts for your task:

1. Prompt paraphrasing – programmatically generate 
and test many different prompts from a paraphrase 
model, then pick the one that works best

2. Gradient-based search – use optimization to search 
for the discrete representation of the prompt that 

makes the desired output most likely

3. Prompt tuning – directly optimize the embeddings 

that are input into the LLM, without bothering to 
construct a discrete representation of the prompt

9/25/24 64



� Insight: literally just asking an LLM to reason about its 

answer can improve its in-context performance 

� Chain-of-thought prompting provides examples of  
reasoning in the in-context training examplesChain-of-

Thought 
Prompting

9/25/24 65Source: http://arxiv.org/abs/2201.11903 

http://arxiv.org/abs/2201.11903


Chain-of-
Thought 
Prompting

� Insight: literally just asking an LLM to reason about its 

answer can improve its in-context performance 

� Chain-of-thought prompting provides examples of  
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