
HOMEWORK 3
APPLYING AND ADAPTING LLMS *

10-423/10-623 GENERATIVE AI
http://423.mlcourse.org

OUT: Oct. 08, 2024
DUE: Oct. 23, 2024

TAs: Ketan, Afreen, Shreya

Instructions
• Collaboration Policy: Please read the collaboration policy in the syllabus.

• Late Submission Policy: See the late submission policy in the syllabus.

• Submitting your work: You will use Gradescope to submit answers to all questions and code.

– Written: You will submit your completed homework as a PDF to Gradescope. Please use the
provided template. Submissions can be handwritten, but must be clearly legible; otherwise, you
will not be awarded marks. Alternatively, submissions can be written in LATEX. Each answer
should be within the box provided. If you do not follow the template, your assignment may
not be graded correctly by our AI assisted grader and there will be a 2% penalty (e.g., if the
homework is out of 100 points, 2 points will be deducted from your final score).

– Programming: You will submit your code for programming questions to Gradescope. We will
examine your code by hand and may award marks for its submission.

• Materials: The data that you will need in order to complete this assignment is posted along with the
writeup and template on the course website.

Question Points

LATEX Template Alignment 0

In-Context Learning 14

Parameter Efficient Fine-Tuning 10

Direct Preference Optimization 15

Programming: LoRA for GPT-2 25

Code Upload 0

Collaboration Questions 2

Total: 66

*Compiled on Wednesday 9th October, 2024 at 10:13

1

http://423.mlcourse.org

Homework 3: Applying and Adapting LLMs 10-423/10-623

1 LATEX Template Alignment (0 points)
1.1. (0 points) Select one: Did you use LATEX for the entire written portion of this homework?

⃝ Yes

⃝ No

1.2. (0 points) Select one: I have ensured that my final submission is aligned with the original template
given to me in the handout file and that I haven’t deleted or resized any items or made any other
modifications which will result in a misaligned template. I understand that incorrectly responding
yes to this question will result in a penalty equivalent to 2% of the points on this assignment.
Note: Failing to answer this question will not exempt you from the 2% misalignment penalty.

⃝ Yes

2 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

2 In-Context Learning (14 points)
2.1. (2 points) Explain the relationship between in-context learning and chain-of-thought prompting.

2.2. (3 points) Write a prompt that might help facilitate in-context learning for the following question:

The cost of electricity per kilowatt-hour increases by 5 cents. Last month, a family used
150 kilowatt-hours at the old rate. This month, they used 100 kilowatt-hours at the new
rate. Altogether, their electricity bills for these two months amount to $45. How much
was the old rate per kilowatt-hour?

2.3. (3 points) Modify your answer from the previous question to use chain-of-thought prompting.

3 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

2.4. (3 points) Modify your answer from the previous question to use zero-shot chain-of-thought
prompting.

2.5. (2 points) Describe an advantage and a disadvantage of zero-shot chain-of-thought prompting as
compared to chain-of-thought prompting.

2.6. (1 point) Meta learning refers to the process of learning how to learn. One use case of meta
learning is determining adaptation rules that, given small amounts of data for new tasks, facilitate
good performance. Describe a similarity and a difference between in-context learning and meta
learning.

4 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

3 Parameter Efficient Fine-Tuning (10 points)
3.1. Suppose you are building a simple feed-forward neural network consisting of L layers. Each layer

is fully connected with sigmoid activations, σ(·), applied elementwise. The D0 input features are
z0. The lth hidden layer zl has Dl hidden units. The output layer zL has only one unit DL = 1.
The model architecture is defined as follows for each, zl ∈ RDl :

zl = σ(Wlzl−1 + bl), ∀l ∈ {1, . . . , L}

where Wl and bl are the parameters of the model.

In the questions below, assume that L = 10 and Dl = 2L−l for all l ∈ {1, . . . , L}.

3.1.a. (1 point) Numerical answer: How many hidden units are in this model? Your answer must
be an integer.

3.1.b. (1 point) Numerical answer: How many parameters are in this model? Your answer must be
an integer.

3.1.c. (1 point) Numerical answer: Now suppose we instead do parameter efficient fine-tuning
in a style similar to BitFit (Ben-Zaken et al., 2021). Specifically, we leave the architecture
unchanged and we fine-tune only the intercept terms, bl, ∀l ∈ {1, . . . , L}, keeping all other
parameters fixed. What percentage of the total parameters are fine-tuned in this setting? Your
answer must be a percentage. (Report percent with two decimal places.)

3.1.d. (2 points) Numerical answer: Suppose we instead inject a bottleneck adapter module (of the
variety introduced by Houlsby et al. (2019)) after each layer:

zl = σ(Wlal−1 + bl), ∀l ∈ {1, . . . , L}
al = adapter(zl,Vl), ∀l ∈ {1, . . . , L}

where a0 = z0 and al ∈ RDl , Vl = [Vl,down,vl,down,Vl,up,vl,up] is a collection of all the
adapter parameters for the lth adapter layer, and:

adapter(a,V) = a+ (Vupσ̃(Vdowna+ vdown) + vup)

We follow the original paper and define σ̃(·) = GELU(·) as the nonlinearity—GELU has no
parameters. Assume the rank of the adapter is 4, i.e. its hidden layer after down-projection
has 4 units. We tune only the adapter parameters. What percentage of the total parameters
are fine-tuned in this setting? Your answer must be a percentage. (Report percent with two
decimal places.)

5 of 23

https://arxiv.org/pdf/2106.10199
https://arxiv.org/pdf/1902.00751

Homework 3: Applying and Adapting LLMs 10-423/10-623

3.2. In Prefix Tuning (Li & Liang, 20), we augment each attention head with a prefix, whose parameters
are fine tuned while the rest of the model remains fixed. If Q,K,V are the standard query, key,
and value matrices in attention, the prefix tuning does the following attention computation:

K̃ = [PK ;K]

Ṽ = [PV ;V]

Ã = softmax(QK̃T /
√
d)

X̃′ = ÃṼ

where Q,K,V ∈ Rn×d and K̃, Ṽ ∈ Rm×d with m = n+ p where p is the prefix length. PK and
PV are the learned prefix parameters (typically encoded via a bottleneck network).

3.2.a. (2 points) Derivation: Write down how Ãi,j the (i, j)th entry of the attention weights is
computed in prefix tuning. Your answer must be in terms of the exp(·) function. (You should
not refer to softmax(·)).

6 of 23

https://arxiv.org/pdf/2101.00190

Homework 3: Applying and Adapting LLMs 10-423/10-623

3.2.b. (3 points) Proof: Conceptually, the key/value vectors K̃i and Ṽi can be divided into prefix
tokens, i ∈ {1, . . . , p}, and content tokens, i ∈ {p+ 1, . . . , p+ n}.

Show that Prefix Tuning does not change the relative attention weight between content tokens.
That is, show that for any i, j, k ∈ {p+ 1, . . . , p+ n} we have:

Ãi,j

Ãi,k

=
Ai,(j−p)

Ai,(k−p)

where Aij are the attention weights of regular attention without prefix tuning.

7 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

4 Direct Preference Optimization (15 points)
4.1. In this question, you will step through the derivation of the direct preference optimization (DPO)

objective function. Recall that in DPO, we assume there exists a latent reward function r∗(x, y)
that returns a real-value score which represents how good some response y is given a prompt x. We
further assume that this latent reward governs the probability that a human ranker prefers response
yw to another response yl according to the formula

p (yw ≻ yl | x) =
exp r∗ (x, yw)

exp r∗ (x, yw) + exp r∗ (x, yl)
(1)

where yw ≻ yl indicates that yw is preferred over yl.

Given a (parameterized) LLM that defines a conditional distribution over responses given a prompt,
πϕ(y | x), the goal of DPO is to fine-tune the parameters, ϕ, such that the expected reward subject
to a KL-divergence penalty is maximized:

π∗
ϕ(y | x) = argmax

πϕ(y|x)
Eπϕ(y|x)

[
r∗(x, y)− β log

πϕ(y | x)
πref(y | x)

]
(2)

for some reference LLM πref.

8 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

4.1.a. (5 points) Show that the optimal LLM can be expressed as

π∗
ϕ(y | x) = 1

Z
πref(y | x) exp

(
1

β
r∗(x, y)

)
(3)

for some normalizing constant Z that does not depend on y. Hint: first, manipulate the
objective function in (2) to be of the form

π∗
ϕ(y | x) = argmin

πϕ(y|x)
KL (πϕ(y | x)||p(y | x)) + C (4)

for some distribution p(y|x) and constant term(s), C, that don’t depend on y. From there,
argue what distribution πϕ(y | x) optimizes the objective in that form.

9 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

4.1.b. (3 points) Using the result in (3), show that

p (yw ≻ yl | x) = σ

(
β log

π∗
ϕ(yw | x)

πref(yw | x)
− β log

π∗
ϕ(yl | x)

πref(yl | x)

)
(5)

by solving (3) for r∗(x, y) and plugging it in to (1)

10 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

4.1.c. (3 points) The probability in (5) can be maximized by minimizing the objective function

ℓDPO(ϕ) = −E(x,yw,yl)∼D [log σ (δ(ϕ))] . (6)

where δ(ϕ) = β log
πϕ(yw|x)
πref(yw|x) − β log

πϕ(yl|x)
πref(yl|x) .

Show that the gradient of ℓDPO, ∇ϕℓDPO(ϕ), is equal to

∇ϕℓDPO(ϕ) = E(x,yw,yl)∼D

[
σ (−δ(ϕ))

(
−β

∇ϕπϕ(yw | x)
πϕ(yw | x)

+ β
∇ϕπϕ(yl | x)
πϕ(yl | x)

)]
(7)

11 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

4.1.d. The gradient in (7) can be used to optimize the parameters of πϕ directly i.e., without having
to train an intermediate reward model! The two terms inside the expectation of (7) can be
interpreted as having different effects on the actual updates made to πϕ.

4.1.d.i. (2 points) What direction does the second term, −β
∇ϕπϕ(yw|x)
πϕ(yw|x) +β

∇ϕπϕ(yl|x)
πϕ(yl|x) , encourage

the parameters to move in? Recall that gradient descent moves in the opposite direction of
the gradient. Hint: think about the effect of updating ϕ in this direction on the likelihoods
πϕ(yw | x) and πϕ(yl | x).

4.1.d.ii. (2 points) Under what conditions is the magnitude of the first term, σ(−δ(ϕ)) large i.e.,
≥ 0.5? Frame your answer in terms of the likelihoods πϕ(yw | x) and πϕ(yl | x).

12 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

5 Programming: LoRA for GPT-2 (25 points)

Introduction

For large pre-trained models, full fine-tuning, which retrains all model parameters, becomes less feasible
due to the increased training time and memory requirements. In this section, you will explore, and build
from scratch, a parameter efficient fine-tuning (PEFT) method, Low Rank Adaptation (LoRA), and
apply it to a pre-trained GPT2 model.

Dataset

The dataset for this homework is the Rotten Tomatoes Dataset from HuggingFace. It is a balanced movie
review dataset containing positive and negative labels denoting sentiment. This dataset will download
automatically when you run train.py

Starter Code

The main structure of the files is organized as follows:

hw3/
lora.py
model.py
dataloader.py
train.py
generate.py
requirements.txt
run_in_colab.ipynb
wandb_api.json

Here is what you will find in each file:

1. lora.py: Implement LoRA in this. Some starter code is provided to guide you. Only implement
LoRA in a linear layer. UPLOAD to Gradescope

2. model.py: The vanilla working transformer implementation from HW1 (i.e. without GQA and
ROPE). Use your implemented LoRA in the attention layers. UPLOAD to Gradescope

3. dataloader.py: A custom dataloader implemented for the rotten tomatoes dataset. After
running other experiments, customize the prompt. UPLOAD to Gradescope

4. train.py: The script for training GPT. This file is long but your only requirement is to make
your model lora-friendly. Note: This is only done if we are using a pretrained model to begin with.
UPLOAD to Gradescope

5. generate.py: The script for generating text with your trained (or raw) GPT model. Since we
are using a classification dataset, convert text outputs from the LLM to integer labels. UPLOAD
to Gradescope

6. requirements.txt: A list of packages that need to be installed for this homework.

7. run_in_colab.ipynb: Provides command lines to run your model in Google Colab.

8. wandb_api.json: Paste your WandB API key here. You don’t have to upload this file.

13 of 23

https://huggingface.co/datasets/rotten_tomatoes

Homework 3: Applying and Adapting LLMs 10-423/10-623

Flags

All the parameters printed in the config can be modified by passing flags to train.py. Table 1 and
Table 2 and contains a list of flags you may find useful while implementing HW3. You can change other
parameters as well in a similar manner.

Configuration Parameter Example Flag Usage
init from --init_from="gpt2-medium"
out dir --out_dir="gpt_lora_default"
device --device="cuda"
rank --rank=128
alpha --alpha=256
lr --lr=2e-5
dropout --dropout=0.05
lora dropout --lora_dropout=0.05
max iters --max_iters=80
wandb project --wandb_project="HW3_lora_finetune_handout"

Table 1: Useful flags for train.py

Configuration Parameter Example Flag Usage
init from --init_from="resume"
out dir --out_dir="gpt_lora_default"
device --device="cuda"
max new tokens --max_new_tokens=5
temperature --temperature=0.6
top k --top_k=200

Table 2: Useful flags for generate.py

There are more parameters available to modify(see train.py), but we don’t expect that you will need to
modify more than the ones mentioned above.

Command Line

Colab provides a free T4 GPU for code execution, albeit with a time limitation that may result in slower
training. In the event of GPU depletion on Colab, options include waiting for GPU recovery, switching
Google accounts, purchasing additional GPU resources, switching to Kaggle, or switching to a cloud
provider (such as GCP or AWS).

python train.py --init_from="gpt2-medium" \
--out_dir="gpt-lora-default"

python generate.py --init_from="resume" \
--out_dir="your_saved_lora_model" \

14 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

Low-Rank Adaptation (LoRA) of LLMs

In this problem, you will implement Low-Rank Adaptation (LoRA), following the approach outlined
in (Hu et al., 2021). Before you continue, we strongly recommend you to go through the paper and
understand how LoRA works.
Models can continue to learn efficiently even when their parameters are projected onto a smaller sub-
space. Essentially, this means that the vast majority of the model’s capabilities can be retained and
modified through adjustments in a significantly reduced parameter space. This allows for us to inject
trainable low-rank decomposition matrices into each layer of the Transformer architecture, greatly re-
ducing the number of trainable parameters for downstream tasks.
For a pretrained weight matrix W0 ∈ Rd×k, LoRA constrains its update through a low-rank decompo-
sition, expressed as follows:

W0 +∆W = W0 +BA,

where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪ min(d, k). During the adaptation process,
W0 remains unchanged—frozen—to ensure the stability of the pre-trained knowledge, while A and
B are updated, serving as the trainable parameters. Note that that we achieve this by setting
requires_grad = False for all parameters except the matrices A and B.

We then apply both W0 and the adjustment ∆W = BA to the same input x, with their outputs being
summed coordinate-wise, resulting in the modified forward pass:

h = W0x+∆Wx = W0x+BAx

As depicted in Figure 1, our initial conditions for training involve setting A with a random Gaussian
distribution and B to zero, making ∆W = BA start from zero. To integrate these updates effectively,
remember to scale ∆Wx by α/r, with α acting as a constant relative to r. This approach simplifies
the optimization process, akin to adjusting the learning rate in Adam, and eliminates the need for hy-
perparameter retuning as r varies. You can start with setting α to the initial value of r you explore,
and experiment with different scaling factors(α/r) by adjusting α and r accordingly. Thus, the scaled
LoRA forward pass you should implement is:

h = W0x+
α

r
∆Wx = W0x+

α

r
BAx

Figure 1: Low-Rank Adaptation (LoRA) applied to a Transformer model.

15 of 23

https://arxiv.org/pdf/2106.09685.pdf

Homework 3: Applying and Adapting LLMs 10-423/10-623

Instruction FineTuning

As in Homework 1 with the Shakespeare dataset, when given a text, GPT2 (or any LLM for that matter)
generates more text to complete the given text. But for a task like text classification, how do you get the
model to generate the labels you want for the given context?

Enter Instruction Fine Tuning. Instruction tuning is a specialized form of fine-tuning in which a model
is trained using instruction-output pairs. It helps bridge the gap between the next-word prediction
objective of LLMs and the our objective of having LLMs adhere to human instructions.

For the purpose of this homework, you can do this by prepending the text in each sample in
the Rotten Tomatoes dataset with an instruction prompt template and then appending it with the
actual label. This modified text is what you will train the model with. This happens in the
get_sentiment_prompt() function in dataloader.py. You can experiment with different
instruction templates and ways to respresent the labels.

Implementation

Note: In the original paper, LoRA has been implemented only in the attention layers, specifically for
the query and value matrices. In this homework you will implement LoRA on the query, key and value
matrices.

The LoRA Linear Layer:

• In lora.py, implement these modifications in the LoRALinear class. This includes:

– __init__: Initialize inherited nn.Linear class, LoRA parameters, and matrices A and B if
the LoRA rank is greater than 0.

– reset_parameters: Reinitialize weights of the inherited linear layer and LoRA matrices
A and B. A is typically initialized with kaiming_uniform_ and B is initialized with
zeroes according to the paper.

– forward: Implement the forward pass of the layer, including the application of LoRA mod-
ifications and dropout if applicable.

– train: Override to ensure LoRA matrices are demerged and set to training mode.

– eval: Override to ensure that LoRA matrices are merged with the actual model weight
metrices and set to evaluation mode.

• mark_only_lora_as_trainable: A utility function to set only LoRA matrices as trainable
parameters for a model.

LoRA for Transformer LMs:

• Apply your above implemented LoRALinear layer to the attention layers within your transformer
model. This is marked with TODOs in model.py.

Instruction Fine-Tuning Method

• All the methods in CustomDataLoader and dataloader.py are complete. However,
you will return to this file at the end of the empirical section and modify the prompt in
get_sentiment_prompt(text, label).

16 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

• Take note of what _add_instruction_finetuning(self, rec) is doing. rec is a
dataset record with ”text” and ”label” fields. The function modifues the record by adding an
"instr_tuned_text" field. This field integrates instructional cues into the original text to
guide model training. It also converts labels to a more intuitive format (e.g., from numeric to
textual labels positive/negative).

Training:

• Now that you have made your GPT model lora friendly, modify train.py to enable training
with the LoRA-enhanced model. Ensure the model is made LoRA-friendly as indicated by the
relevant TODO.

Accuracy Evaluation Method

• In generate.py you must implement the method predict_labels which iterates through
a dataset, constructs the prompt for each example, and converts the response of the model from a
text string to an integer label (1 for positive and 0 for negative).

• Details: Small models like GPT2 may not easily generate EOS token (especially for small r). Ac-
knowledging these limitations, one simple hack in our case (where training labels are categorical)
is to simply check if these labels exists in the first few characters of the generated text.

• Make sure that you account for garbage generations when converting from text labels generated by
the model to integers. For example, for a given sample, if the model predicts something other than
the specified labels(for eg, positive/negative) you should not omit it when calculating accuracy.

Hints

1. While implementing your code, you may find it help to adjust the model, e.g. ‘gpt’ is the smallest,
but you will need at least ‘gpt-medium’ to see decent results from fine-tuning with LORA.

2. When trying different variations (across r, alpha, etc) it is recommended you use the --out_dir
flag so you can save the different models you create.

3. If you are facing CUDA BLOCKING errors, run with CPU device instead of CUDA on Colab to
isolate errors better. Switch to CUDA for the actual training though.

17 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

LoRA Implementation and Training

Note: For all the empirical questions report results using gpt2-medium. If not specified, return results
using default parameters (i.e with r = 128, α = 512, lora dropout = 0.05, dropout= 0.0, and
learning rate = 2.5e-4). Use the default prompt unless mentioned (5.11)

5.1. (2 points) Does training with LoRA add inference latency (i.e. are more parameters being learned
that would add to inference time)? Explain.

5.2. (2 points) What percentage of parameters are fine-tuned with when you set r = 128 and α = 512?

Inference and Evaluation with LoRA

5.3. (1 point) What is the accuracy of your model without any fine-tuning? (Hint: you can run this di-
rectly using python generate.py --init-from="gpt2-medium") [Expected runtime
on Colab T4: 2 minutes]

5.4. (4 points) What is the test accuracy with LoRA fine-tuning across r ∈ {16, 128, 196}? What is the
test accuracy of full fine-tuning (dropout 0.05) i.e. without LoRA? In this question, we maintain a
constant scaling factor of 4, i.e. α = 4r. Note: Be sure to report the test accuracy from the “Best
Val Checkpoint” and not the “Last Iter Checkpoint”.

[Expected runtime on Colab T4: 25-30 minutes per experiment]

method r alpha test accuracy (Best
Val Checkpoint)

LoRA 16 64

LoRA 128 512

LoRA 196 784

Full Fine Tuning (dropout=0.05) 0 –

18 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

5.5. (4 points) Plot wandb validation loss curves for LoRA experiments with

(r, α) ∈ {(16, 64), (128, 512), (196, 784)} and full fine-tuning (r = 0).

5.6. (3 points) How does your fine-tuning with LoRA model’s performance compare to full fine-tuning
(without LoRA)? Also, how does the value of r affect performance? Briefly discuss (include
comments on convergence analysis of validation loss).

5.7. (2 points) Is there anything unexpected about the shape of the validation loss when r = 196?
If yes, explain what is unexpected. If no, describe why it appears typical. Do you think it is
useful to increase LoRA rank beyond this point (r = 196) or should we tune it with different
hyperparameters?

19 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

5.8. (2 points) Report the test accuracy and plot wandb validation loss curves for LoRA with (r, α) ∈
{(16, 64), (16, 256)} and full fine-tuning (r = 0).

[Expected runtime on Colab T4: 25-30 minutes for the new setting]

method r alpha accuracy

LoRA 16 64

LoRA 16 256

Full Fine Tuning (dropout=0.05) 0 –

5.9. (1 point) In your results from the previous question, how did increasing α while keeping the rank
r unchanged affect the performance of the model? Why might this be the case?

5.10. (1 point) Changing both the learning rate and α may be redundant. Why?

20 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

5.11. (1 point) Try out a different prompt template during training and generation by modifying
get_sentiment_prompt() in dataloader.py. Report the text of your new instruction
template here. You can do so simply by copy/pasting in the python code. Comment on what
motivated your change to the prompt. (Note that you do not need to find one that performs better.)

Code Snippet

Comments

5.12. (2 points) For the default setting r = 128, α = 512, report the test accuracy with the original
prompt template and with your new prompt template. (Note that you do not need to find one that
performs better.)

[Expected runtime on Colab T4: 25-30 minutes for the new setting]

21 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

6 Code Upload (0 points)
6.1. (0 points) Did you upload your code to the appropriate programming slot on Gradescope?

Hint: The correct answer is ‘yes’.

⃝ Yes

⃝ No

For this homework, you should upload all the code files that contain your new and/or changed
code. Files of type .py and .ipynb are both fine.

22 of 23

Homework 3: Applying and Adapting LLMs 10-423/10-623

7 Collaboration Questions (2 points)
After you have completed all other components of this assignment, report your answers to these ques-
tions regarding the collaboration policy. Details of the policy can be found in the syllabus.

7.1. (1 point) Did you collaborate with anyone on this assignment? If so, list their name or Andrew ID
and which problems you worked together on.

7.2. (1 point) Did you find or come across code that implements any part of this assignment? If so,
include full details.

23 of 23

	LaTeX Template Alignment
	In-Context Learning
	Parameter Efficient Fine-Tuning
	Direct Preference Optimization
	Programming: LoRA for GPT-2
	Code Upload
	Collaboration Questions

