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Front Matter

 Announcements: 

 HW2 released 9/23 9/24, due 10/7 (today!) at 11:59 PM

 HW3 released 10/7 (today!), due 10/23 at 11:59 PM

 You are not expected to work on HW3 over Fall Break

 Quiz 3 on 10/9 (Wednesday)

 Will cover Lectures 9 – 12 (only the RLHF/DPO 

portion of today’s lecture)

10/7/24 2



Recall: 
Reinforcement 
Learning from 
Human 
Feedback 

10/7/24 3Source: https://arxiv.org/pdf/2203.02155 

https://arxiv.org/pdf/2203.02155


Reinforcement 
Learning: 
Object of 
Interest for 
Fine-tuning 
LLMs

 The LLM to be fine-tuned, 𝜋𝜙 𝑎 𝑠

 Specifies a distribution over next tokens given any input 

sequence

 An episode Τ = 𝑥, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑇  is one completion of 

the prompt 𝑥, ending in an EOS token

 The LLM induces a distribution over possible completions

𝑝𝜙 Τ = 𝑝 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑇  | 𝑥 ≔ 𝑠0

𝑝Θ Τ = ෑ

𝑡=0

𝑇−1

𝜋𝜙 𝑎𝑡 𝑠𝑡
410/7/24

𝑠𝑡 𝜙

𝑝 𝑎1|𝑠𝑡; 𝜙 ≔ 𝜋𝜙 𝑎1 𝑠𝑡

𝑝 𝑎2|𝑠𝑡; 𝜙 ≔ 𝜋𝜙 𝑎2 𝑠𝑡

𝑝 𝑎 𝒜 |𝑠𝑡; 𝜙 ≔ 𝜋𝜙 𝑎 𝒜 𝑠𝑡

⋮
Model:



Likelihood 
Ratio 
Method 
a.k.a. 
REINFORCE 
(Williams, 
1992)
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Objective function: ℓ 𝜙 = −𝔼𝑝𝜙 Τ 𝑅𝜃 Τ , the negative expected reward of a response

∇𝜙ℓ 𝜙 = ∇𝜙 −𝔼𝑝𝜙 Τ 𝑅𝜃 Τ = ∇𝜙 − න 𝑅𝜃 Τ 𝑝𝜙 Τ 𝑑Τ

∇𝜙ℓ 𝜙 = − න 𝑅𝜃 Τ ∇𝜙𝑝𝜙 Τ 𝑑Τ = − න 𝑅𝜃 Τ ∇𝜙 log 𝑝𝜙 Τ 𝑝𝜙 Τ 𝑑Τ

∇𝜙ℓ 𝜙 = −𝔼𝑝𝜙 Τ 𝑅𝜃 Τ ∇𝜙 log 𝑝𝜙 Τ

∇𝜙ℓ 𝜙 ≈ −
1

𝑁


𝑛=1

𝑁

𝑅𝜃 Τ 𝑛 ∇𝜙 log 𝑝𝜙 Τ 𝑛

(where Τ 𝑛 = 𝑎0
𝑛

, 𝑠1
𝑛

, 𝑎1
𝑛

, … , 𝑠
𝑇 𝑛

𝑛  is a sampled completion of 𝑥)

∇𝜙ℓ 𝜙 = −
1

𝑁


𝑛=1

𝑁

𝑟𝜃 𝑥, 𝑎0
𝑛

, … , 𝑎
𝑇 𝑛
𝑛



𝑡=0

𝑇 𝑛 −1

∇𝜙 log 𝜋𝜙 𝑎𝑡
𝑛

𝑠𝑡
𝑛



Proximal Policy 
Optimization 
(Schulman et 
al., 2017) 
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 There are two high-level modifications to get from 

REINFORCE to proximal policy optimization (PPO): 

1. Sampled trajectories/rewards can be highly variable, 

which leads to unstable estimates of the expectation

 Instead of working with 𝑅𝜃, PPO considers a 

trajectory’s advantage over some baseline

 The baseline is typically defined in terms of the 

value function at each state in the trajectory

Source: https://arxiv.org/pdf/1707.06347 

https://arxiv.org/pdf/1707.06347


Proximal Policy 
Optimization 
(Schulman et 
al., 2017) 
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 There are two high-level modifications to get from 

REINFORCE to proximal policy optimization (PPO): 

2. Policy gradient methods are on-policy: the policy 

being optimized is also being used to generate the 

trajectories used in training

 This can also lead to instability/poor convergence if 

the policy ever becomes bad

 Intuition: ensure that the policy remains “close to” 

some policy known to be good

 In RLHF, we can just use the original 

(instruction fine-tuned) LLM! 

Source: https://arxiv.org/pdf/1707.06347 

https://arxiv.org/pdf/1707.06347


Reinforcement 
Learning from 
Human 
Feedback: 
PPO

10/7/24 8Source: https://arxiv.org/pdf/2203.02155 

• Step 3 fine-tunes the LLM’s parameters 

using the PPO objective plus a pre-

training loss term:

ℓ 𝜙 = −𝔼𝑝𝜙 Τ 𝑅𝜃 Τ − 𝛽 log
𝜋𝜙

𝑅𝐿 Τ

𝜋𝑆𝐹𝑇 Τ

ℓ 𝜙 = −𝛾𝔼𝑥 ∼ 𝐷𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛
log 𝜋𝜙

𝑅𝐿 x

https://arxiv.org/pdf/2203.02155


Alright, so 
what does all 
of this get us?

10/7/24 9Source: https://arxiv.org/pdf/2203.02155 

https://arxiv.org/pdf/2203.02155


Reinforcement 
Learning from 
Human 
Feedback: 
Results

 Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

10/7/24 10Source: http://arxiv.org/abs/2204.05862 

http://arxiv.org/abs/2204.05862


Reinforcement 
Learning from 
Human 
Feedback: 
Results
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 Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-

shot performance on most tasks

http://arxiv.org/abs/2204.05862


Man, 
reinforcement 
learning seems 
hard; couldn’t 
we do 
something 
easier?
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 Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-

shot performance on most tasks

http://arxiv.org/abs/2204.05862


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

 Intuition: in some sense, the reinforcement learning 

problem we defined for fine-tuning LLMs to human 

preferences is very “simple”

 All of the dynamics (the state space, action space, 

transition function, reward model) are all known 

a priori and deterministic

 Idea: instead of optimizing a learned reward model, 

fine-tune the LLM using the stated preferences directly 

 Increase the likelihood of higher-ranking 

responses, 𝑦𝑤, and decrease the likelihood of 

lower-ranking responses, 𝑦𝑙.

10/7/24 13Source: https://arxiv.org/pdf/2305.18290 

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

 Assume there exists a (universal) latent reward model, 𝑟∗, 

that is responsible for the observed preferences according to

𝑝 𝑦𝑤 ≻ 𝑦𝑙 | 𝑥 =
exp 𝑟∗ 𝑥, 𝑦𝑤

exp 𝑟∗ 𝑥, 𝑦𝑤 + exp 𝑟∗ 𝑥, 𝑦𝑙

 If we knew this true reward model, the objective function 

RLHF would try to optimize (without the pre-training loss) is

ℓ 𝜙 = −𝔼𝑝𝜙 𝑦|𝑥 𝑟∗ 𝑥, 𝑦 − 𝛽 log
𝜋𝜙 𝑦|𝑥

𝜋𝑆𝐹𝑇 𝑦|𝑥

 It can be shown that the optimal policy satisfies 

𝜋𝜙∗ 𝑦|𝑥 =
1

𝑍 𝑥
𝜋𝑆𝐹𝑇 𝑦|𝑥 exp

𝑟∗ 𝑥, 𝑦

𝛽

for some normalizing factor 𝑍 𝑥
10/7/24 14Source: https://arxiv.org/pdf/2305.18290 

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

 Assume there exists a (universal) latent reward model, 𝑟∗, 

that is responsible for the observed preferences according to

𝑝 𝑦𝑤 ≻ 𝑦𝑙 | 𝑥 =
exp 𝑟∗ 𝑥, 𝑦𝑤

exp 𝑟∗ 𝑥, 𝑦𝑤 + exp 𝑟∗ 𝑥, 𝑦𝑙

 If we knew this true reward model, the objective function 

RLHF would try to optimize (without the pre-training loss) is

ℓ 𝜙 = −𝔼𝑝𝜙 𝑦|𝑥 𝑟∗ 𝑥, 𝑦 − 𝛽 log
𝜋𝜙 𝑦|𝑥

𝜋𝑆𝐹𝑇 𝑦|𝑥

 It can be shown that the optimal policy satisfies 

𝜋𝜙∗ 𝑦|𝑥 =
1

𝑍 𝑥
𝜋𝑆𝐹𝑇 𝑦|𝑥 exp

𝑟∗ 𝑥, 𝑦

𝛽

solving this for 𝑟∗ and plugging it into the probability above… 
10/7/24 15Source: https://arxiv.org/pdf/2305.18290 

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 
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 Assume that the LLM 𝜋𝜙∗  

that is responsible for the observed preferences according to 

𝑝 𝑦𝑤 ≻ 𝑦𝑙  | 𝑥 =

1

1 + exp 𝛽 log
𝜋𝜙∗ 𝑦𝑙|𝑥

𝜋𝑆𝐹𝑇 𝑦𝑙|𝑥
− 𝛽 log

𝜋𝜙∗ 𝑦𝑤|𝑥

𝜋𝑆𝐹𝑇 𝑦𝑤|𝑥

 “Your language model is secretly a reward model”

 Key takeaway: we can directly optimize the LLM parameters, 

𝜙, by maximizing this probability over samples 𝑥, 𝑦𝑤 , 𝑦𝑙  

from the human labelled preferences dataset 𝒟!

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

10/7/24 17Source: https://arxiv.org/pdf/2305.18290 

• “For summarization, we use reference summaries in the test 

set as the baseline; for dialogue, we use the preferred 

response in the test dataset as the baseline” 

• Key caveat: “we evaluate algorithms with their win rate 

against a baseline policy, using GPT-4 as a proxy for human 

evaluation…”

https://arxiv.org/pdf/2305.18290


Image 
Generation

1810/7/24 Source: https://arxiv.org/pdf/2307.01952.pdf 

 Class-conditional 

generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 

generation
• Given a text description, sample 

an image that depicts the prompt

Prompt: A propaganda poster depicting 

a cat dressed as french emperor 

napoleon holding a piece of cheese.

https://arxiv.org/pdf/2307.01952.pdf


Timeline: Text-
to-Image 
Generation

19Source: http://arxiv.org/abs/2309.00810 10/7/24

http://arxiv.org/abs/2309.00810


Class-conditional GANs
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Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛)𝐺𝜃

p(real | image)

𝐷𝜙

𝒙 ~ 𝒟

𝑦 = 1

𝑦 = 0

𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’

𝜃 𝜙

𝐷𝜙

𝐷𝜙 𝒙

label

Appending a label embedding 
to the input of both the 
generator and discriminator 
allows GANs to generate 
specific classes of images

𝒛 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒



Generative adversarial text to 
image synthesis

10/7/24 21Source: https://arxiv.org/pdf/1605.05396 

https://arxiv.org/pdf/1605.05396


Pathways 
Autoregressive 
Text-to-Image 
(Parti)

10/7/24 22Source: https://arxiv.org/pdf/2206.10789 

https://arxiv.org/pdf/2206.10789


Pathways 
Autoregressive 
Text-to-Image 
(Parti): 
Step 1. Image 
Tokenization

10/7/24 23Source: https://arxiv.org/pdf/2110.04627 

https://arxiv.org/pdf/2110.04627


Pathways 
Autoregressive 
Text-to-Image 
(Parti): 
Step 2. Training

10/7/24 24Source: https://arxiv.org/pdf/2206.10789 

 Idea: treat the task of text-to-image generation 

as a sequence-to-sequence task over different 

token spaces (one for text and one for images) 

 Start with an off-the-shelf text-encoder 

pretrained using a BERT-style objective 

(masked language modelling)

https://arxiv.org/pdf/2206.10789


Pathways 
Autoregressive 
Text-to-Image 
(Parti): 
Step 2. Training
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 Idea: treat the task of text-to-image generation 

as a sequence-to-sequence task over different 

token spaces (one for text and one for images) 

 Training data consists of (caption, image) pairs

 Images are tokenized and the decoder is 

trained to predict the next image-token

https://arxiv.org/pdf/2206.10789


Pathways 
Autoregressive 
Text-to-Image 
(Parti): 
Step 3. 
Generation

10/7/24 26Source: https://arxiv.org/pdf/2206.10789 

 Idea: treat the task of text-to-image generation 

as a sequence-to-sequence task over different 

token spaces (one for text and one for images) 

 To perform generation, tokens are sampled from the 

decoder iteratively until the EOS token is generated. Then 

the sequence is then passed into the trained detokenizer.  

https://arxiv.org/pdf/2206.10789


Latent 
Diffusion 
Models

 Issue: diffusion models typically operate in pixel space 

where training and inference are both incredibly slow

 Training: 

 Guided Diffusion: 150 – 1000 V100 days 

 Imagen: 256 TPU-v4s for 4 days = 1000 TPU days

 Inference:

 Guided Diffusion: 50k samples in 5 days on A100

10/7/24 27



Latent 
Diffusion 
Models
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 Issue: diffusion models typically operate in pixel space 

where training and inference are both incredibly slow

 Idea: instead of working in pixel space, first project the 

images down to some lower-dimensional latent space, 

then fit a diffusion model in this latent space

 This also makes conditioning the diffusion model on 

arbitrary vector inputs 𝑦 (e.g., embedded captions) 

much faster 

 Conditioning can be done via cross-attention in the 

UNet layers



Latent Diffusion Models
10/7/24 29

𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1… 𝒛1…𝒛𝑇

… …

Encoder

Decoder

LLM

an orange cat in 
a field of grass

𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑞𝜙 𝒛𝑡+1 𝒛𝑡 𝑞𝜙 𝒛1 𝒛0𝑞𝜙 𝒛𝑇 𝒛𝑇−1

𝑝𝜃 𝒛0 𝒛1, ො𝑦𝑝𝜃 𝒛𝑡 𝒛𝑡+1, ො𝑦𝑝𝜃 𝒛𝑇−1 𝒛𝑇, ො𝑦

𝑦

𝜏𝜃

ො𝑦

𝑝𝜃 𝒛𝑇

UNet with cross-attention

Figure courtesy of Matt Gormley

𝑥

𝑥



LDMs: Autoencoder
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𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1… 𝒛1…𝒛𝑇

… …

Encoder

Decoder

LLM

an orange cat in 
a field of grass

𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑞𝜙 𝒛𝑡+1 𝒛𝑡𝑞𝜙 𝒛𝑇 𝒛𝑇−1

𝑝𝜃 𝒛𝑡 𝒛𝑡+1, ො𝑦𝑝𝜃 𝒛𝑇−1 𝒛𝑇, ො𝑦

𝑦

𝜏𝜃

ො𝑦

𝑝𝜃 𝒛𝑇

UNet with cross-attention

Pixel Space

 The autoencoder projects high dimensional images (e.g., 

1024x1024 pixels) down to a lower-dimensional latent 

space and faithfully projects back up to pixel space

 The original LDM paper considered two options:

1. a VAE-like model (regularizes the latent distribution 

towards a Gaussian)

2. a VQGAN (performs vector quantization in the 

decoder i.e., uses a discrete codebook)

 This model is trained ahead of time just on raw images 

and then kept frozen while training the LDM

Source: https://arxiv.org/pdf/2112.10752 

https://arxiv.org/pdf/2112.10752


LDMs: DDPM 
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𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1… 𝒛1…𝒛𝑇

… …

Encoder

Decoder𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑞𝜙 𝒛𝑡+1 𝒛𝑡 𝑞𝜙 𝒛1 𝒛0𝑞𝜙 𝒛𝑇 𝒛𝑇−1

𝑝𝜃 𝒛0 𝒛1𝑝𝜃 𝒛𝑡 𝒛𝑡+1𝑝𝜃 𝒛𝑇−1 𝒛𝑇𝑝𝜃 𝒛𝑇

Figure courtesy of Matt Gormley

𝑥

𝑥

Latent Space



LDMs: Conditioning 
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𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1… 𝒛1…𝒛𝑇

… …

Encoder

Decoder𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑞𝜙 𝒛𝑡+1 𝒛𝑡 𝑞𝜙 𝒛1 𝒛0𝑞𝜙 𝒛𝑇 𝒛𝑇−1

𝑝𝜃 𝒛0 𝒛1, ො𝑦𝑝𝜃 𝒛𝑡 𝒛𝑡+1, ො𝑦𝑝𝜃 𝒛𝑇−1 𝒛𝑇, ො𝑦

ො𝑦

𝑝𝜃 𝒛𝑇

Figure courtesy of Matt Gormley

𝑥

𝑥

Latent Space



LDMs: Prompt Model
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… …

LLM

an orange cat in 
a field of grass

𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑝𝜃 𝒛0 𝒛1, ො𝑦𝑝𝜃 𝒛𝑡 𝒛𝑡+1, ො𝑦𝑝𝜃 𝒛𝑇−1 𝒛𝑇, ො𝑦

𝑦

𝜏𝜃

ො𝑦

Figure courtesy of Matt Gormley

𝑝𝜃 𝒛𝑇

 The prompt model is just an encoder-only transformer

 The parameters are trained alongside the diffusion model’s parameters 

 The objective is to learn representations of the text prompts that 

meaningfully inform/guide the latent diffusion model



LDMs: Prompt Model
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… …𝒛𝑇−1 𝒛0𝒛𝑡𝒛𝑡+1 𝒛1𝒛𝑇

𝑝𝜃 𝒛0 𝒛1, ො𝑦𝑝𝜃 𝒛𝑡 𝒛𝑡+1, ො𝑦𝑝𝜃 𝒛𝑇−1 𝒛𝑇, ො𝑦

Figure courtesy of Matt Gormley

𝑝𝜃 𝒛𝑇

(Learned) Reverse Process:



Recall: 
Parameterizing 
the Learned 

Reverse Process

 𝑝𝜃 𝒙𝑡−1 𝒙𝑡 ∼ 𝒩 𝜇𝜃 𝒙𝑡 , 𝑡 , Σ𝜃 𝒙𝑡 , 𝑡

 Idea #1: Rather than learn Σ𝜃 𝒙𝑡 , 𝑡 , just use what we 

know about 𝑞 𝒙𝑡−1 𝒙𝑡 , 𝒙0 ∼ 𝒩 𝜇𝑞 𝒙𝑡 , 𝒙0 , 𝜎𝑡
2𝐼  and set

Σ𝜃 𝒙𝑡 , 𝑡 = 𝜎𝑡
2𝐼

 Idea #2: We want 𝜇𝜃 𝒙𝑡 , 𝑡  to be close to 𝜇𝑞 𝒙𝑡 , 𝒙0  

 Option C: Learn a network that approximates the 𝝐 

that gave rise to 𝒙𝑡 from 𝒙0 in the forward process:

𝜇𝜃 𝒙𝑡 , 𝑡 = 𝛼𝑡
0

𝒙𝜃
0

𝒙𝑡 , 𝑡 + 𝛼𝑡
𝑡

𝒙𝑡

where 𝒙𝜃
0

𝒙𝑡 , 𝑡 =
𝒙𝑡 + 1 − ത𝛼𝑡 𝝐𝜃 𝒙𝑡 , 𝑡

ത𝛼𝑡

where 𝝐𝜃 𝒙𝑡 , 𝑡 = UNet𝜃 𝒙𝑡 , 𝑡
10/7/24 35



Parameterizing 
the Learned 
Conditional
Reverse Process
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 𝑝𝜃 𝒙𝑡−1 𝒙𝑡 ∼ 𝒩 𝜇𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 , Σ𝜃 𝒙𝑡 , 𝑡

 Idea #1: Rather than learn Σ𝜃 𝒙𝑡 , 𝑡 , just use what we 

know about 𝑞 𝒙𝑡−1 𝒙𝑡 , 𝒙0 ∼ 𝒩 𝜇𝑞 𝒙𝑡 , 𝒙0 , 𝜎𝑡
2𝐼  and set

Σ𝜃 𝒙𝑡 , 𝑡 = 𝜎𝑡
2𝐼

 Idea #2: We want 𝜇𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦  to be close to 𝜇𝑞 𝒙𝑡 , 𝒙0  

 Option C: Learn a network that approximates the 𝝐 

that gave rise to 𝒙𝑡 from 𝒙0 in the forward process:

𝜇𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 = 𝛼𝑡
0

𝒙𝜃
0

𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 + 𝛼𝑡
𝑡

𝒙𝑡

where 𝒙𝜃
0

𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 =
𝒙𝑡 + 1 − ത𝛼𝑡 𝝐𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦

ത𝛼𝑡

where 𝝐𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 = UNet𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦
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𝝐𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦 = UNet𝜃 𝒙𝑡 , 𝑡, 𝜏𝜃 𝑦
 The noise model includes 

cross attention (yellow 

boxes) between the UNet 

layers and the representation 

of the prompt text

 During training we optimize 

both the parameters of the 

UNet noise model and the 

parameters of the LLM 

simultaneously 
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𝐾 = 𝑋𝑾𝑘
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𝑋′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉
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𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝐴 = softmax 𝑆

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑋𝑾𝑞

𝑋′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

Self Attention
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𝒒1 𝒒2 𝒒3

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝐴 = softmax 𝑆

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑌𝑾𝑞

𝑌′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

𝒚1 𝒚2 𝒚3

Cross Attention
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𝒒1 𝒒2 𝒒3

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑆 =
𝑄𝐾𝑇

𝑑𝑘

𝐴 = softmax 𝑆

𝑉 = 𝑋𝑾𝑣

𝐾 = 𝑋𝑾𝑘

𝑄 = 𝑌𝑾𝑞

𝑌′ = 𝐴𝑉 =  softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

𝒚1 𝒚2 𝒚3

LDMs: Cross Attention

an orange cat in … …
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𝒙1 𝒙2 𝒙3 𝒙4 𝒚1 𝒚2 𝒚3

LDMs: Cross Attention

an orange cat in … …

 The cross-attention in the UNet is 

placed within a larger Transformer block

Source: https://arxiv.org/pdf/2112.10752 

https://arxiv.org/pdf/2112.10752
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LDMs: Results
Source: https://arxiv.org/pdf/2112.10752 

https://arxiv.org/pdf/2112.10752
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LDMs: Results
Source: https://arxiv.org/pdf/2112.10752 

https://arxiv.org/pdf/2112.10752
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LDMs: Results
Source: https://arxiv.org/pdf/2112.10752 

 Key takeaway: LDMs can 

generate very high-quality 

images (in terms of FID / IS 

scores) with many fewer 

parameters than competing 

models because the most 

computationally intensive step 

happens in low dimensional 

latent space, instead of high 

dimensional pixel space

https://arxiv.org/pdf/2112.10752
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