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CONDITIONAL IMAGE GENERATION
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Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation
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Figure from Razavi et al. (2019) Figure from Bie et al. (2023)



Image Editing
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Figure from Saharia et al. (2022)

A variety of tasks involve 
automatic editing of an 
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores 

color to a greyscale image
• Uncropping creates a 

photo-realistic 
reconstruction of a 
missing side of an image



Editing Images with Text

prompt-to-
prompt can edit 
one generated 
image simply by 
adjusting the 
prompt
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down-weight existing 
descriptor in the prompt

swap one word for another

phrase insertion for style 
change

phrase insertion for content 
change



LATENT DIFFUSION MODEL (LDM)
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Latent Diffusion Model
Motivation:
• diffusion models typically operate in pixel 

space
• yet, training typically takes hundreds of GPU 

days 
– 150 – 1000 V100 days [Guided Diffusion] 

(Dhariwal & Nichol, 2021)
– 256 TPU-v4s for 4 days = 1000 TPU days [Imagen] 

(Sharia et al., 2022)
• inference is also slow

– 50k samples in 5 days on A100 GPU [Guided 
Diffusion] (Dhariwal & Nichol, 2021)

– 15 seconds per image

Key Idea:
• train an autoencoder (i.e. encoder-decoder 

model) that learns an efficient latent space 
that is perceptually equivalent to the data 
space

• keeping the autoencoder fixed, train a 
diffusion model on the latent 
representations of real images z0 = 
encoder(x)
– forward model: latent representation z0 à noise 

zT

– reverse model: noise zT à latent representation 
z0

• to generate an image:
– sample noise zT

– apply reverse diffusion model to obtain a latent 
representation z0

– decode the latent representation to an image x
• condition on prompt via cross attention in 

latent space
9
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Latent Diffusion Model (LDM)
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LDM: Autoencoder
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LDM: Autoencoder
• The autoencoder is chosen so that it can project 

high dimensional images (e.g. 1024x1024) down to 
low dimensional latent space and faithfully project 
back up to pixel space

• The original LDM paper considers two options:
1. a VAE-like model (regularizes the noise towards a 

Gaussian)
2. a VQGAN (performs vector quantization in the decoder; 

i.e., it uses a discrete codebook)

• This model is trained ahead of time just on raw 
images (no text prompts) and then frozen

• The frozen encoder-decoder can be reused for all 
subsequent LDM training
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LDM: the Prompt Model

• The prompt model is just a Transformer LM
• We learn its parameters alongside the diffusion 

model
• The goal is to build up good representations of 

the text prompts such that they inform the latent 
diffusion process
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LDM: with DDPM
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LDM: with DDPM
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Forward Process:

qφ(z1:T ) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T ) = pθ(zT )
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT ) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Herewe let z0 = z, the output of the encoder from our autoencoder



LDM: with DDPM
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Forward Process:

qφ(z1:T ) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T ) = pθ(zT )
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT ) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Herewe let z0 = z, the output of the encoder from our autoencoder

Question: How do 
we define the 

mean to condition 
on the prompt 

representation?



Properties of forward and exact reverse processes
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Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 + (1− ᾱt)ϵwhere ϵ ∼ N (0, I)

Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt

Property #3: Combining the two previous prop‐
erties, we can obtain a different parameteriza‐
tion of µ̃q which has been shown empirically to
help in learning pθ.

Rearranging xt =
√

ᾱtx0 + (1 − ᾱt)ϵ we have
that:

x0 = (x0 + (1− ᾱt)ϵ) /
√

ᾱt

Substituting this definition of x0 into property
#2’s definition of µ̃q gives:

µ̃q(xt, x0) = α
(0)
t x0 + α

(t)
t xt

= α
(0)
t

(

(x0 + (1− ᾱt)ϵ) /
√

ᾱt

)

+ α
(t)
t xt

=
1

√

αt

(

xt −
(1− αt)
√

1− ᾱt

ϵ

)

Recall…



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2
t I):

Σθ(xt, t) = σ2
t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximates the
ϵ that gave rise to xt from x0 in the forward
process from xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ (xt, t) + α
(t)
t xt

where x(0)
θ (xt, t) = (x0 + (1− ᾱt)ϵθ(xt, t)) /

√
ᾱt

where ϵθ(xt, t) = UNetθ(xt, t)

Recall…



LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

µθ(zt, t, τθ(y)) = f(UNet(zt, t, τθ(y)))
prompt space

• The noise model 
includes cross 
attention (yellow 
boxes) to the 
representation of 
the prompt text

• During training we 
optimize both the 
parameters of the 
UNet noise model 
and the parameters 
of the LLM 
simultaneously 



LDM: Cross-Attention in Noise Model
• The cross-attention is placed within 

a larger Transformer layer
• The cross-attention modifies the keys and 

values to be the prompt representation
• The queries are the current layer of UNet

27

Transformer Layer inside UNet

Figure from http://arxiv.org/abs/2112.10752 



LDM: Learning the Diffusion Model + LLM
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Algorithm 1 Training
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0, y ∈ D do
4: t ∼ Uniform(1, . . . , T )
5: ϵ ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtϵ

7: ℓt(θ)← ∥ϵ− ϵθ(xt, t, τθ(y))∥2
8: θ ← θ −∇θℓt(θ)

Given a training sample z0, we want

pθ(zt−1 | zt, τθ(y))

to be as close as possible to

q(zt−1 | zt, z0)

Intuitively, this makes sense: if the
learned reverse process is supposed
to subtract away the noise, then
whenever we’re working with a spe‐
cific z0 it should subtract it away
exactly as exact reverse process would
have.

Objective Function:



Latent Diffusion Model (LDM)
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CROSS-ATTENTION
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q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/
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dk
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Cross Attention
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q1 q2 q3 q4 qt = WT
q yt, ∀t ∈ {1, . . . , n}

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

vj = WT
v xj , ∀j ∈ {1, . . . ,m}

st,j = kT
j qt/

√
d, ∀j, t

kj = WT
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Wv

values

keys
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Cross Attention
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Cross Attention
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q1 q2 q3 q4 Q = YWq ∈ R
n×d

v1 v2 v3
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Example: Cross Attention for Translation
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q1 q2 q3 q4 Q = YWq ∈ R
n×d

v1 v2 v3
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y1 y2 y3 y4

Wk

Wq
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√
d ∈ R
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keys
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√

d)V
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estoy llegando tarde I am running late

for translation:
• m is the number of 

tokens in the source 
language

• n is the number of tokens 
in the target language

• the attention weights for 
a target word define a 
probability distribution 
over the source words



PROMPT-TO-PROMPT
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Background: Image Editing
• Fixing the Random Seed:

– A simple baseline for image editing 
with text: change part of the prompt,  
keep the random seed fixed (e.g. the 
noise at the start of diffusion), and 
then run diffusion sampler 

– Problem: the entire structure of the 
image may change dramatically

– Doesn’t feel like “editing” at all, more 
like generation of unrelated images

• Mask-based Image Editing:
– standard approaches to text-based 

image editing typically require an 
image mask as well

– the mask specifies which part of the 
image should remain unchanged

– then the text prompt informs how 
the unmasked part should be 
adapted (e.g. by a diffusion model)

– (Example: Blended Diffusion)

40
Figure from http://arxiv.org/abs/2208.01626 Figure from http://arxiv.org/abs/2111.14818 
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Figure from http://arxiv.org/abs/2208.01626 Figure from http://arxiv.org/abs/2111.14818 

here the composition 
remains consistent 

across images

the composition is 
inconsistent in various 
ways: the background, 

whole cake vs. single slice, 
how much cake is in view



Prompt-to-Prompt
Prompt-to-Prompt:
• Goal: edit images with text only and do not 

require the user to provide a mask
• Key Idea: 

– given pre-trained latent diffusion model
– run diffusion model with original prompt and 

store the attention weights and cross-
attention weights (from the pixels back to the 
text) 

– re-run diffusion with edited prompt, but 
(carefully) copy in the cross-attention weights 
from the previous run

– exactly how to copy in the attention weights 
depends on the type of edit

• Inference only: no training is involved! we 
only modify how the samples are drawn from 
the pre-trained latent diffusion model

42
Figure from http://arxiv.org/abs/2208.01626

the composition remains consistent across images, 
but with only the text for guidance (no mask)



Latent Diffusion Model (LDM)
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Prompt-to-prompt: (1) assumes we have a pretrained latent diffusion model
and (2) does no parameter estimation



LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

µθ(zt, t, τθ(y)) = UNet(zt, t, τθ(y))
prompt space

• The noise model 
includes cross 
attention (yellow 
boxes) to the 
representation of 
the prompt text

• During training we 
optimize both the 
parameters of the 
UNet noise model 
and the parameters 
of the LLM 
simultaneously Prompt-to-prompt modifies the cross attention in LDM, which looks at both the 

text encoding and the (latent) representation of the image



LDM: Cross-Attention
Cross-Attention in LDM:
• the query matrix is built 

from a layer of UNet
• the key/value matrices 

are built from the text-
encoder representation 
of the prompt

45
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LDM: Cross-Attention
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Cross-Attention in LDM:
• the query matrix is built 

from a layer of UNet
• the key/value matrices 

are built from the text-
encoder representation 
of the prompt



LDM: Cross-Attention
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Cross-Attention in LDM:
• the query matrix is built 

from a layer of UNet
• the key/value matrices 

are built from the text-
encoder representation 
of the prompt

attention
weights

The actual attention and 
cross-attention blocks are 

multi-head

for LDM:
• m is the number of 

tokens in the text 
prompt

• n is the number of 
dimensions in the latent 
space (if we have 
compression)

• n would be the number 
of pixels in the image (if 
we had no compression)

• the attention weights for 
a (latent) pixel define a 
probability distribution 
over the prompt tokens



Prompt-to-Prompt: Editing Cross Attention
Prompt-to-Prompt:
• Goal: edit images with text only and do 

not require the user to provide a mask
• Key Idea: 

– given pre-trained latent diffusion model
– run diffusion model with original 

prompt and store the attention weights 
and cross-attention weights (from the 
pixels back to the text) 

– re-run diffusion with edited prompt, but 
(carefully) copy in the cross-attention 
weights from the previous run

– exactly how to copy in the attention 
weights depends on the type of edit

• Inference only: no training is involved! 
we only modify how the samples are 
drawn from the pre-trained latent 
diffusion model

49
Figure from http://arxiv.org/abs/2208.01626



Prompt-to-Prompt: 
Editing Cross Attention

1. encode the original 
prompt y

2. run diffusion on y and 
obtain attention weights 
AT-1,…,A1

3. encode the modified 
prompt y*

4. run diffusion again 
a) reuse the noise zT from the 

original run
b) use the attention weights 

from the original run until 
timestep 𝜏
AT-1,…,At

c) then switch to using 
attention weights from 
this current run
A*t-1,…,A*1 

d) regardless of which 
attention weights, you still 
attend to y*

50
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z1…zT

AT-1 AT-2 At At-1 A1

A*
t-1 A*

1AT-1 AT-2 At

y



Prompt-to-Prompt: 
Editing Cross Attention
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5. if running in latent space, 
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recover pixel space 
representation

ŷ∗
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Question:
Why do we use from the original attention 
weights for a while before swapping to the 
new attention weights?

Answer:



Prompt-to-Prompt: Editing Cross Attention
Prompt-to-Prompt:
• Goal: edit images with text only and do 

not require the user to provide a mask
• Key Idea: 

– given pre-trained latent diffusion model
– run diffusion model with original 

prompt and store the attention weights 
and cross-attention weights (from the 
pixels back to the text) 

– re-run diffusion with edited prompt, but 
(carefully) copy in the cross-attention 
weights from the previous run

– exactly how to copy in the attention 
weights depends on the type of edit

• Inference only: no training is involved! 
we only modify how the samples are 
drawn from the pre-trained latent 
diffusion model

55
Figure from http://arxiv.org/abs/2208.01626

Algorithm 1 Prompt‐to‐Prompt image editing
1: Input: A source prompt y, a target prompt y∗, and a random seed s.
2: Output: A source image xsrc and an edited image xdst.
3: zT ∼ N (0, I) a unit Gaussian random variable with random seed s;
4: z∗

T
← z′

T
;

5: for t = T, T − 1, . . . , 1 do
6: zt−1,At ← DM(zt, y, t, s);
7: A∗

t
← DM(z∗

t
, y∗, t, s);

8: Ât ← Edit(At,A∗

t
, t);

9: z∗
t−1
← DM(z∗

t
, y∗, t, s, t){A← Ât};

10: return (z0, z∗0)

Edit(At,A∗

t
, t) :=

{

A∗

t
if t < τ

At otherwise.



new A*

original A

Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length 

encoder

• e.g. length = 77, if we use CLIP 
encoder

• orange cat sitting <PAD> <PAD> 
…<PAD>

– However, the words might not align 
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for 

“orange” to both “big” and “tabby” 
in the new attention weights 56

orange cat sitting

big tabby cat sitting

A.,1 A.,2 A.,3

A*
.,2 A*

.,3 A*
.,4A*

.,1

y∗

y
<PAD>

A.,4



CLIP (the text encoder for Prompt to Prompt)

57
Figure from Radford et al. (2021) 
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shape as A*

A.,1 A.,2 A.,3A.,1

original A

Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length 

encoder

• e.g. length = 77, if we use CLIP 
encoder

• orange cat sitting <PAD> <PAD> 
…<PAD>

– However, the words might not align 
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for 

“orange” to both “big” and “tabby” 
in the new attention weights 58
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Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length 

encoder

• e.g. length = 77, if we use CLIP 
encoder

• orange cat sitting <PAD> <PAD> 
…<PAD>

– However, the words might not align 
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for 

“orange” to both “big” and “tabby” 
in the new attention weights 59
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Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length 

encoder

• e.g. length = 77, if we use CLIP 
encoder

• orange cat sitting <PAD> <PAD> 
…<PAD>

– However, the words might not align 
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for 

“orange” to both “big” and “tabby” 
in the new attention weights 60
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original A

edited Â
with same 

shape as A*

Attention Swapping
• We need to do this swapping for every batch, for every head, and for every timestep 

(until tau)
• Each row corresponds to a different latent space dimension
• Efficiency trick: define a mapper matrix M such that Â = AM

61

orange cat sitting

big tabby cat sitting

A.,1 A.,2 A.,3

A.,1 A.,2 A.,3A.,1

y∗

y

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

1 1 6 11

2 2 7 12

3 3 8 13

4 4 9 14

5 5 10 15

1 1 0 0

0 0 1 0

0 0 0 1

Â A M

=



original A

edited Â
with same 

shape as A*

Attention Swapping
• We need to do this swapping for every batch, for every head, and for every timestep 

(until tau)
• Each row corresponds to a different latent space dimension
• Efficiency trick: define a mapper matrix M such that Â = AM
• Instead of copying, we average over “big” and “tabby”
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Attention Swapping
• We need to do this swapping for every batch, for every head, and for every timestep 

(until tau)
• Each row corresponds to a different latent space dimension
• Efficiency trick: define a mapper matrix M such that Â = AM
• Instead of copying, we average over “big” and “orange”
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Attention Swapping
• We need to do this swapping for every batch, for every head, and for every timestep 

(until tau)
• Each row corresponds to a different latent space dimension
• Efficiency trick: define a mapper matrix M such that Â = AM
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original A

edited Â
with same 

shape as A*

Attention Swapping
• We need to do this swapping for every batch, for every head, and for every timestep 

(until tau)
• Each row corresponds to a different latent space dimension
• Efficiency trick: define a mapper matrix M such that Â = AM
• Instead of copying, we average over “big” and “tabby”
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The same approach applies if you 
assume the same number of words 

since one word might consist of 
multiple tokens



Prompt-to-Prompt: 
Alpha 

66

zT-1 zztzt+1…
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Hyperparameter tuning:
we can swap from Â to 

A* at different 
timesteps for different 

words



Prompt-to-Prompt: Alpha 
• We can swap from Â to A* at different timesteps for different words
• New hyperparameters: 𝛼T ,…, 𝛼1 
• The matrix 𝛼t controls how/when we switch at timestep t
• For example, if we want to allow one word to deviate from the attention pattern earlier than the 

others, then that word’s column can change before the others
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Prompt-to-Prompt: Alpha 
• We can swap from Â to A* at different timesteps for different words
• New hyperparameters: 𝛼T ,…, 𝛼1 
• The matrix 𝛼t controls how/when we switch at timestep t
• For example, if we want to allow one word to deviate from the attention pattern earlier than the 

others, then that word’s column can change before the others
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Prompt-to-Prompt: Alpha 
• We can swap from Â to A* at different timesteps for different words
• New hyperparameters: 𝛼T ,…, 𝛼1 
• The matrix 𝛼t controls how/when we switch at timestep t
• For example, if we want to allow one word to deviate from the attention pattern earlier than the 

others, then that word’s column can change before the others
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Prompt-to-Prompt Results
• word/phrase cross-attention swapping automatically identifies the regions of the image that 

need to remain constant and those that should be adapted
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Figure from http://arxiv.org/abs/2208.01626



Prompt-to-Prompt 
Results

• varying the moment of the 
attention swap to A* allows us 
to see the effect of our cross-
attention manipulation

71
Figure from http://arxiv.org/abs/2208.01626



Prompt-to-Prompt Results
• So far we’ve 

focused on 
swapping one 
word/phrase for 
another

• Prompt-to-prompt 
supports different 
types of edits

• Different types of 
edits are achieved 
through different 
manipulations of 
cross-attention 
weights

72

down-weight existing 
descriptor in the prompt

swap one word for another

phrase insertion for style 
change

phrase insertion for content 
change

Figure from http://arxiv.org/abs/2208.01626


