
Prompt to Prompt

1

10-423/10-623 Generative AI

Matt Gormley & Henry Chai
Lecture 13

Oct. 9, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

CONDITIONAL IMAGE GENERATION

4

Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation

5

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023)

Image Editing

6
Figure from Saharia et al. (2022)

A variety of tasks involve
automatic editing of an
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores

color to a greyscale image
• Uncropping creates a

photo-realistic
reconstruction of a
missing side of an image

Editing Images with Text

prompt-to-
prompt can edit
one generated
image simply by
adjusting the
prompt

7

down-weight existing
descriptor in the prompt

swap one word for another

phrase insertion for style
change

phrase insertion for content
change

LATENT DIFFUSION MODEL (LDM)

8

Latent Diffusion Model
Motivation:
• diffusion models typically operate in pixel

space
• yet, training typically takes hundreds of GPU

days
– 150 – 1000 V100 days [Guided Diffusion]

(Dhariwal & Nichol, 2021)
– 256 TPU-v4s for 4 days = 1000 TPU days [Imagen]

(Sharia et al., 2022)
• inference is also slow

– 50k samples in 5 days on A100 GPU [Guided
Diffusion] (Dhariwal & Nichol, 2021)

– 15 seconds per image

Key Idea:
• train an autoencoder (i.e. encoder-decoder

model) that learns an efficient latent space
that is perceptually equivalent to the data
space

• keeping the autoencoder fixed, train a
diffusion model on the latent
representations of real images z0 =
encoder(x)
– forward model: latent representation z0 à noise

zT

– reverse model: noise zT à latent representation
z0

• to generate an image:
– sample noise zT

– apply reverse diffusion model to obtain a latent
representation z0

– decode the latent representation to an image x
• condition on prompt via cross attention in

latent space
9

Latent Diffusion Model 14

Latent Diffusion Model (LDM)

16

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: Autoencoder

17

z

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: Autoencoder
• The autoencoder is chosen so that it can project

high dimensional images (e.g. 1024x1024) down to
low dimensional latent space and faithfully project
back up to pixel space

• The original LDM paper considers two options:
1. a VAE-like model (regularizes the noise towards a

Gaussian)
2. a VQGAN (performs vector quantization in the decoder;

i.e., it uses a discrete codebook)

• This model is trained ahead of time just on raw
images (no text prompts) and then frozen

• The frozen encoder-decoder can be reused for all
subsequent LDM training

18

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: the Prompt Model

• The prompt model is just a Transformer LM
• We learn its parameters alongside the diffusion

model
• The goal is to build up good representations of

the text prompts such that they inform the latent
diffusion process

19

prompt space

LLM

τθ

orange cat

ŷ

y

LDM: with DDPM

20

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: with DDPM

21

Forward Process:

qφ(z1:T) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T) = pθ(zT)
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT) ∼ N (0, I), just like pθ(xT).

Herewe let z0 = z, the output of the encoder from our autoencoder

LDM: with DDPM

22

Forward Process:

qφ(z1:T) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T) = pθ(zT)
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT) ∼ N (0, I), just like pθ(xT).

Herewe let z0 = z, the output of the encoder from our autoencoder

Question: How do
we define the

mean to condition
on the prompt

representation?

Properties of forward and exact reverse processes

23

Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 + (1− ᾱt)ϵwhere ϵ ∼ N (0, I)

Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt

Property #3: Combining the two previous prop‐
erties, we can obtain a different parameteriza‐
tion of µ̃q which has been shown empirically to
help in learning pθ.

Rearranging xt =
√

ᾱtx0 + (1 − ᾱt)ϵ we have
that:

x0 = (x0 + (1− ᾱt)ϵ) /
√

ᾱt

Substituting this definition of x0 into property
#2’s definition of µ̃q gives:

µ̃q(xt, x0) = α
(0)
t x0 + α

(t)
t xt

= α
(0)
t

(

(x0 + (1− ᾱt)ϵ) /
√

ᾱt

)

+ α
(t)
t xt

=
1

√

αt

(

xt −
(1− αt)
√

1− ᾱt

ϵ

)

Recall…

Parameterizing the learned reverse process

24

Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2
t I):

Σθ(xt, t) = σ2
t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximates the
ϵ that gave rise to xt from x0 in the forward
process from xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ (xt, t) + α
(t)
t xt

where x(0)
θ (xt, t) = (x0 + (1− ᾱt)ϵθ(xt, t)) /

√
ᾱt

where ϵθ(xt, t) = UNetθ(xt, t)

Recall…

LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

µθ(zt, t, τθ(y)) = f(UNet(zt, t, τθ(y)))
prompt space

• The noise model
includes cross
attention (yellow
boxes) to the
representation of
the prompt text

• During training we
optimize both the
parameters of the
UNet noise model
and the parameters
of the LLM
simultaneously

LDM: Cross-Attention in Noise Model
• The cross-attention is placed within

a larger Transformer layer
• The cross-attention modifies the keys and

values to be the prompt representation
• The queries are the current layer of UNet

27

Transformer Layer inside UNet

Figure from http://arxiv.org/abs/2112.10752

LDM: Learning the Diffusion Model + LLM

28

Algorithm 1 Training
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0, y ∈ D do
4: t ∼ Uniform(1, . . . , T)
5: ϵ ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtϵ

7: ℓt(θ)← ∥ϵ− ϵθ(xt, t, τθ(y))∥2
8: θ ← θ −∇θℓt(θ)

Given a training sample z0, we want

pθ(zt−1 | zt, τθ(y))

to be as close as possible to

q(zt−1 | zt, z0)

Intuitively, this makes sense: if the
learned reverse process is supposed
to subtract away the noise, then
whenever we’re working with a spe‐
cific z0 it should subtract it away
exactly as exact reverse process would
have.

Objective Function:

Latent Diffusion Model (LDM)

29

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

CROSS-ATTENTION

30

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

31

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv

a4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

values

keys

queries

scores

attention weights

Cross Attention

32

q1 q2 q3 q4 qt = WT
q yt, ∀t ∈ {1, . . . , n}

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

vj = WT
v xj , ∀j ∈ {1, . . . ,m}

st,j = kT
j qt/

√
d, ∀j, t

kj = WT
k xj , ∀j ∈ {1, . . . ,m}

Wv

values

keys

queries

scores

attention weightsat = softmax(st), ∀t

y′

t =

m∑

j=1

at,jvj , ∀t

a4,1 a4,2 a4,3

s4,1 s4,2 s4,3

x1 x2 x3

y’4

Cross Attention

36

q1 q2 q3 q4 qt = WT
q yt, ∀t ∈ {1, . . . , n}

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

vj = WT
v xj , ∀j ∈ {1, . . . ,m}

st,j = kT
j qt/

√
d, ∀j, t

kj = WT
k xj , ∀j ∈ {1, . . . ,m}

Wv

values

keys

queries

scores

attention weightsat = softmax(st), ∀t

y′

t =

m∑

j=1

at,jvj , ∀t

s2 s3 s4

x1 x2 x3

y’4

s1

a2 a3 a4a1

y’3y’ 2y’1

Cross Attention

37

q1 q2 q3 q4 Q = YWq ∈ R
n×d

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

V = XWv ∈ R
m×d

S = QKT /
√
d ∈ R

n×m

K = XWk ∈ R
m×d

Wv

values

keys

queries

scores

attention weightsA = softmax(S)

Y = AV = softmax(QKT /
√

d)V

s2 s3 s4

x1 x2 x3

y’4

s1

a2 a3 a4a1

y’3y’ 2y’1

Example: Cross Attention for Translation

38

q1 q2 q3 q4 Q = YWq ∈ R
n×d

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

V = XWv ∈ R
m×d

S = QKT /
√
d ∈ R

n×m

K = XWk ∈ R
m×d

Wv

values

keys

queries

scores

attention weightsA = softmax(S)

Y = AV = softmax(QKT /
√

d)V

s2 s3 s4

x1 x2 x3

y’4

s1

a2 a3 a4a1

y’3y’ 2y’1

estoy llegando tarde I am running late

for translation:
• m is the number of

tokens in the source
language

• n is the number of tokens
in the target language

• the attention weights for
a target word define a
probability distribution
over the source words

PROMPT-TO-PROMPT

39

Background: Image Editing
• Fixing the Random Seed:

– A simple baseline for image editing
with text: change part of the prompt,
keep the random seed fixed (e.g. the
noise at the start of diffusion), and
then run diffusion sampler

– Problem: the entire structure of the
image may change dramatically

– Doesn’t feel like “editing” at all, more
like generation of unrelated images

• Mask-based Image Editing:
– standard approaches to text-based

image editing typically require an
image mask as well

– the mask specifies which part of the
image should remain unchanged

– then the text prompt informs how
the unmasked part should be
adapted (e.g. by a diffusion model)

– (Example: Blended Diffusion)

40
Figure from http://arxiv.org/abs/2208.01626 Figure from http://arxiv.org/abs/2111.14818

Background: Image Editing
• Fixing the Random Seed:

– A simple baseline for image editing
with text: change part of the prompt,
keep the random seed fixed (e.g. the
noise at the start of diffusion), and
then run diffusion sampler

– Problem: the entire structure of the
image may change dramatically

– Doesn’t feel like “editing” at all, more
like generation of unrelated images

• Mask-based Image Editing:
– standard approaches to text-based

image editing typically require an
image mask as well

– the mask specifies which part of the
image should remain unchanged

– then the text prompt informs how
the unmasked part should be
adapted (e.g. by a diffusion model)

– (Example: Blended Diffusion)

41
Figure from http://arxiv.org/abs/2208.01626 Figure from http://arxiv.org/abs/2111.14818

here the composition
remains consistent

across images

the composition is
inconsistent in various
ways: the background,

whole cake vs. single slice,
how much cake is in view

Prompt-to-Prompt
Prompt-to-Prompt:
• Goal: edit images with text only and do not

require the user to provide a mask
• Key Idea:

– given pre-trained latent diffusion model
– run diffusion model with original prompt and

store the attention weights and cross-
attention weights (from the pixels back to the
text)

– re-run diffusion with edited prompt, but
(carefully) copy in the cross-attention weights
from the previous run

– exactly how to copy in the attention weights
depends on the type of edit

• Inference only: no training is involved! we
only modify how the samples are drawn from
the pre-trained latent diffusion model

42
Figure from http://arxiv.org/abs/2208.01626

the composition remains consistent across images,
but with only the text for guidance (no mask)

Latent Diffusion Model (LDM)

43

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

Prompt-to-prompt: (1) assumes we have a pretrained latent diffusion model
and (2) does no parameter estimation

LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

µθ(zt, t, τθ(y)) = UNet(zt, t, τθ(y))
prompt space

• The noise model
includes cross
attention (yellow
boxes) to the
representation of
the prompt text

• During training we
optimize both the
parameters of the
UNet noise model
and the parameters
of the LLM
simultaneously Prompt-to-prompt modifies the cross attention in LDM, which looks at both the

text encoding and the (latent) representation of the image

LDM: Cross-Attention
Cross-Attention in LDM:
• the query matrix is built

from a layer of UNet
• the key/value matrices

are built from the text-
encoder representation
of the prompt

45

q1 q2 q3 q4 Q = YWq ∈ R
n×d

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

V = XWv ∈ R
m×d

S = QKT /
√
d ∈ R

n×m

K = XWk ∈ R
m×d

Wv

A = softmax(S)

Y = AV = softmax(QKT /
√

d)V

s2 s3 s4

x1 x2 x3

y’4

s1

a2 a3 a4a1

y’3y’ 2y’1

big orange cat

LDM: Cross-Attention

46

q1 q2 q3 q4

Q = YWq ∈ R
n×d

y1 y2 y3 y4

V = XWv ∈ R
m×d

S = QKT /
√
d ∈ R

n×m

K = XWk ∈ R
m×d

(attention weights)A = softmax(S)

Y = AV = softmax(QKT /
√

d)Vy’4

a2 a3 a4a1

y’3y’ 2y’1

v1

v2

v3

k1

k2

k3

x1

x2

x3

b
i
g

o
r
a
n
g
e

c
a
t

Cross-Attention in LDM:
• the query matrix is built

from a layer of UNet
• the key/value matrices

are built from the text-
encoder representation
of the prompt

LDM: Cross-Attention

47

q1 q2 q3 q4

Q = YWq ∈ R
n×d

y1 y2 y3 y4

V = XWv ∈ R
m×d

S = QKT /
√
d ∈ R

n×m

K = XWk ∈ R
m×d

(attention weights)A = softmax(S)

Y = AV = softmax(QKT /
√

d)Vy’4

a2 a3 a4a1

y’3y’ 2y’1

v1

v2

v3

k1

k2

k3

x1

x2

x3

b
i
g

o
r
a
n
g
e

c
a
t

Cross-Attention in LDM:
• the query matrix is built

from a layer of UNet
• the key/value matrices

are built from the text-
encoder representation
of the prompt

attention
weights

The actual attention and
cross-attention blocks are

multi-head

for LDM:
• m is the number of

tokens in the text
prompt

• n is the number of
dimensions in the latent
space (if we have
compression)

• n would be the number
of pixels in the image (if
we had no compression)

• the attention weights for
a (latent) pixel define a
probability distribution
over the prompt tokens

Prompt-to-Prompt: Editing Cross Attention
Prompt-to-Prompt:
• Goal: edit images with text only and do

not require the user to provide a mask
• Key Idea:

– given pre-trained latent diffusion model
– run diffusion model with original

prompt and store the attention weights
and cross-attention weights (from the
pixels back to the text)

– re-run diffusion with edited prompt, but
(carefully) copy in the cross-attention
weights from the previous run

– exactly how to copy in the attention
weights depends on the type of edit

• Inference only: no training is involved!
we only modify how the samples are
drawn from the pre-trained latent
diffusion model

49
Figure from http://arxiv.org/abs/2208.01626

Prompt-to-Prompt:
Editing Cross Attention

1. encode the original
prompt y

2. run diffusion on y and
obtain attention weights
AT-1,…,A1

3. encode the modified
prompt y*

4. run diffusion again
a) reuse the noise zT from the

original run
b) use the attention weights

from the original run until
timestep 𝜏
AT-1,…,At

c) then switch to using
attention weights from
this current run
A*t-1,…,A*1

d) regardless of which
attention weights, you still
attend to y*

50

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ
latent space (or pixel space)

AT-1 AT-2 At At-1 A1y

Prompt-to-Prompt:
Editing Cross Attention

1. encode the original
prompt y

2. run diffusion on y and
obtain attention weights
AT-1,…,A1

3. encode the modified
prompt y*

4. run diffusion again
a) reuse the noise zT from the

original run
b) use the attention weights

from the original run until
timestep 𝜏
AT-1,…,At

c) then switch to using
attention weights from
this current run
A*t-1,…,A*1

d) regardless of which
attention weights, you still
attend to y*

51

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ
latent space (or pixel space)

LLM

τθ

tabby cat

ŷ∗

y∗

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)

z1…zT

AT-1 AT-2 At At-1 A1

A*
t-1 A*

1AT-1 AT-2 At

y

Prompt-to-Prompt:
Editing Cross Attention

52

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ
latent space

LLM

τθ

tabby cat
y∗

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)

z1…zT

AT-1 AT-2 At At-1 A1

A*
t-1 A*

1AT-1 AT-2 At

y
Decoder

x̃D

pixel space

Decoder

x̃D

5. if running in latent space,
then use decoder to
recover pixel space
representation

ŷ∗

53

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ
latent space

LLM

τθ

tabby cat
y∗

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)

z1…zT

AT-1 AT-2 At At-1 A1

A*
t-1 A*

1AT-1 AT-2 At

y
Decoder

x̃D

pixel space

Decoder

x̃D
ŷ∗

Question:
Why do we use from the original attention
weights for a while before swapping to the
new attention weights?

Answer:

Prompt-to-Prompt: Editing Cross Attention
Prompt-to-Prompt:
• Goal: edit images with text only and do

not require the user to provide a mask
• Key Idea:

– given pre-trained latent diffusion model
– run diffusion model with original

prompt and store the attention weights
and cross-attention weights (from the
pixels back to the text)

– re-run diffusion with edited prompt, but
(carefully) copy in the cross-attention
weights from the previous run

– exactly how to copy in the attention
weights depends on the type of edit

• Inference only: no training is involved!
we only modify how the samples are
drawn from the pre-trained latent
diffusion model

55
Figure from http://arxiv.org/abs/2208.01626

Algorithm 1 Prompt‐to‐Prompt image editing
1: Input: A source prompt y, a target prompt y∗, and a random seed s.
2: Output: A source image xsrc and an edited image xdst.
3: zT ∼ N (0, I) a unit Gaussian random variable with random seed s;
4: z∗

T
← z′

T
;

5: for t = T, T − 1, . . . , 1 do
6: zt−1,At ← DM(zt, y, t, s);
7: A∗

t
← DM(z∗

t
, y∗, t, s);

8: Ât ← Edit(At,A∗

t
, t);

9: z∗
t−1
← DM(z∗

t
, y∗, t, s, t){A← Ât};

10: return (z0, z∗0)

Edit(At,A∗

t
, t) :=

{

A∗

t
if t < τ

At otherwise.

new A*

original A

Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length

encoder

• e.g. length = 77, if we use CLIP
encoder

• orange cat sitting <PAD> <PAD>
…<PAD>

– However, the words might not align
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for

“orange” to both “big” and “tabby”
in the new attention weights 56

orange cat sitting

big tabby cat sitting

A.,1 A.,2 A.,3

A*
.,2 A*

.,3 A*
.,4A*

.,1

y∗

y
<PAD>

A.,4

CLIP (the text encoder for Prompt to Prompt)

57
Figure from Radford et al. (2021)

edited Â
with same

shape as A*

A.,1 A.,2 A.,3A.,1

original A

Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length

encoder

• e.g. length = 77, if we use CLIP
encoder

• orange cat sitting <PAD> <PAD>
…<PAD>

– However, the words might not align
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for

“orange” to both “big” and “tabby”
in the new attention weights 58

orange cat sitting

big tabby cat sitting

A.,1 A.,2 A.,3

y∗

y
<PAD>

A.,4

new A*

original A

Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length

encoder

• e.g. length = 77, if we use CLIP
encoder

• orange cat sitting <PAD> <PAD>
…<PAD>

– However, the words might not align
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for

“orange” to both “big” and “tabby”
in the new attention weights 59

orange cat sitting

big tabby cat sitting

A.,1 A.,2 A.,3

A*
.,2 A*

.,3 A*
.,4A*

.,1

y∗

y

Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length

encoder

• e.g. length = 77, if we use CLIP
encoder

• orange cat sitting <PAD> <PAD>
…<PAD>

– However, the words might not align
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for

“orange” to both “big” and “tabby”
in the new attention weights 60

original A

edited Â
with same

shape as A*

orange cat sitting

big tabby cat sitting

A.,1 A.,2 A.,3

A.,1 A.,2 A.,3A.,1

y∗

y

original A

edited Â
with same

shape as A*

Attention Swapping
• We need to do this swapping for every batch, for every head, and for every timestep

(until tau)
• Each row corresponds to a different latent space dimension
• Efficiency trick: define a mapper matrix M such that Â = AM

61

orange cat sitting

big tabby cat sitting

A.,1 A.,2 A.,3

A.,1 A.,2 A.,3A.,1

y∗

y

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

1 1 6 11

2 2 7 12

3 3 8 13

4 4 9 14

5 5 10 15

1 1 0 0

0 0 1 0

0 0 0 1

Â A M

=

original A

edited Â
with same

shape as A*

Attention Swapping
• We need to do this swapping for every batch, for every head, and for every timestep

(until tau)
• Each row corresponds to a different latent space dimension
• Efficiency trick: define a mapper matrix M such that Â = AM
• Instead of copying, we average over “big” and “tabby”

62

orange cat sitting

big tabby cat sitting

A.,1 A.,2 A.,3

A.,1 A.,2 A.,3A.,1

y∗

y

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

1/2 1/2 6 11
2/2 2/2 7 12
3/2 3/2 8 13
4/2 4/2 9 14
5/2 5/2 10 15

.5 .5 0 0

0 0 1 0

0 0 0 1

Â A M

=

Attention Swapping
• We need to do this swapping for every batch, for every head, and for every timestep

(until tau)
• Each row corresponds to a different latent space dimension
• Efficiency trick: define a mapper matrix M such that Â = AM
• Instead of copying, we average over “big” and “orange”

63

orange cat sitting

tabby cat sitting

y∗

y

1 6 11 16

2 7 12 17

3 8 13 18

4 9 14 19

5 10 15 20

(1+6)/2 11 16
(2+7)/2 12 17
(3+8)/2 13 18
(4+9)/2 14 19
(5+10)/2 15 20

.5 0 0

.5 0 0

0 1 0

0 0 1

Â A M

=

big

Attention Swapping
• We need to do this swapping for every batch, for every head, and for every timestep

(until tau)
• Each row corresponds to a different latent space dimension
• Efficiency trick: define a mapper matrix M such that Â = AM

64

orange cat sitting

tabby cat sitting

A.,1 A.,2 A.,3

A.,1 A.,2 A.,3

y∗

y

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

1 0 0

0 1 0

0 0 1

Â A M

=

original A

edited Â
with same

shape as A*

Attention Swapping
• We need to do this swapping for every batch, for every head, and for every timestep

(until tau)
• Each row corresponds to a different latent space dimension
• Efficiency trick: define a mapper matrix M such that Â = AM
• Instead of copying, we average over “big” and “tabby”

65

apple in basket

water## ##melon in basket

A.,1 A.,2 A.,3

A.,1 A.,2 A.,3A.,1

y∗

y

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

1/2 1/2 6 11
2/2 2/2 7 12
3/2 3/2 8 13
4/2 4/2 9 14
5/2 5/2 10 15

.5 .5 0 0

0 0 1 0

0 0 0 1

Â A M

=

The same approach applies if you
assume the same number of words

since one word might consist of
multiple tokens

Prompt-to-Prompt:
Alpha

66

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ
latent space

LLM

τθ

tabby cat

ŷ

y∗

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)

z1…zT

AT-1 AT-2 At At-1 A1

A*
t-1 A*

1ÂT-1 ÂT-2 Ât

y
Decoder

x̃D

pixel space

Decoder

x̃D

Hyperparameter tuning:
we can swap from Â to

A* at different
timesteps for different

words

Prompt-to-Prompt: Alpha
• We can swap from Â to A* at different timesteps for different words
• New hyperparameters: 𝛼T ,…, 𝛼1
• The matrix 𝛼t controls how/when we switch at timestep t
• For example, if we want to allow one word to deviate from the attention pattern earlier than the

others, then that word’s column can change before the others

67

Ât A*
t

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

𝛼t

⊙

big tabby cat sitting

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(1 - 𝛼t)

⊙+

Prompt-to-Prompt: Alpha
• We can swap from Â to A* at different timesteps for different words
• New hyperparameters: 𝛼T ,…, 𝛼1
• The matrix 𝛼t controls how/when we switch at timestep t
• For example, if we want to allow one word to deviate from the attention pattern earlier than the

others, then that word’s column can change before the others

68

Ât A*
t

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

𝛼t-1

⊙

big tabby cat sitting

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

(1 - 𝛼t-1)

⊙+

Prompt-to-Prompt: Alpha
• We can swap from Â to A* at different timesteps for different words
• New hyperparameters: 𝛼T ,…, 𝛼1
• The matrix 𝛼t controls how/when we switch at timestep t
• For example, if we want to allow one word to deviate from the attention pattern earlier than the

others, then that word’s column can change before the others

69

Ât A*
t

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

𝛼t-2

⊙

big tabby cat sitting

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

(1 - 𝛼t-2)

⊙+

Prompt-to-Prompt Results
• word/phrase cross-attention swapping automatically identifies the regions of the image that

need to remain constant and those that should be adapted

70
Figure from http://arxiv.org/abs/2208.01626

Prompt-to-Prompt
Results

• varying the moment of the
attention swap to A* allows us
to see the effect of our cross-
attention manipulation

71
Figure from http://arxiv.org/abs/2208.01626

Prompt-to-Prompt Results
• So far we’ve

focused on
swapping one
word/phrase for
another

• Prompt-to-prompt
supports different
types of edits

• Different types of
edits are achieved
through different
manipulations of
cross-attention
weights

72

down-weight existing
descriptor in the prompt

swap one word for another

phrase insertion for style
change

phrase insertion for content
change

Figure from http://arxiv.org/abs/2208.01626

