10-423/623: Generative AI Lecture 3 – Learning LLMs and Decoding

Henry Chai & Matt Gormley

9/4/24

Front Matter

- Announcements:
	- HW0 released 8/28, due 9/9 (next Monday) at 11:59 PM
		- Two components: written and programming
			- Separate assignments on Gradescope
		- Unique policy specific to HW0: **we will grant (almost) any extension request**
	- Quiz 1 in-class on 9/11 (next Wednesday)
	- Instructor OH start this week; see the OH calendar for more details

Recall: Scaled Dot-Product Attention

$$
[\boldsymbol{q}_1, \cdots, \boldsymbol{q}_N] = \boldsymbol{W}_q^T[\boldsymbol{x}_1, \cdots, \boldsymbol{x}_N]
$$

$$
[\boldsymbol{k}_1, \cdots, \boldsymbol{k}_N] = \boldsymbol{W}_k^T[\boldsymbol{x}_1, \cdots, \boldsymbol{x}_N]
$$

$$
[\boldsymbol{v}_1, \cdots, \boldsymbol{v}_N] = \boldsymbol{W}_v^T[\boldsymbol{x}_1, \cdots, \boldsymbol{x}_N]
$$

Which dimension is the softmax applied over: row -wise or column -wise?

Holy cow, that's a lot of new arrows… do we always want/need all of those?

Causal Attention

$$
AV = \left(\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V\right)
$$

 $A = \text{softmax}(S)$

• Suppose we're training our transformer to predict the next token(s) given the input… • … then attending to tokens that come after

the current token is

cheating!

Idea: we can effectively delete or "mask" some of these

Masking

9/4/24 **13**

Idea: we can effectively delete or "mask" some of these

Which of the mask matrices corresponds to this set of arrows?

Idea: we can effectively delete or "mask" some of these

Masked Multi -headed Attention: Matrix Form

$$
X' = \text{concat}\left\{\text{softmax}\left(\frac{Q^{(i)}K^{(i)}}{\sqrt{d_k}} + M\right)V^{(i)}\right\} \text{ where } K^{(i)} = XW_{q}^{(i)}
$$
\n\nMasked

\nMulti-headed

\nAttention:

\nMatrix Form

\n

w _q ⁽ⁱ⁾	w ₁ ⁽ⁱ⁾	w ₂ ⁽ⁱ⁾
Matrix Form	w _q ⁽ⁱ⁾	wulti-headed attention

\nMatrix Form

\n

w _q ⁽ⁱ⁾	w _q ⁽ⁱ⁾	
Matrix Form	w _q ⁽ⁱ⁾	w _q ⁽ⁱ⁾

Summary thus Far

- 1. Language Modeling
	- \cdot Key idea: condition on previous words to **sample the next word**
	- To define the **probability** of the next word, we can…
		- \cdot use conditional independence assumption (*n*-grams)
		- throw a neural network at it (RNN-LM or Transformer-LM)
- 2. (Module-based) AutoDiff
	- A tool for **computing gradients** of a differentiable function, $b = f(a)$
	- \cdot Key building block: **modules** with forward() and backward()
		- \cdot Can define f as **code** in forward() by chaining existing modules together
- ^{9/4/24} ¹⁷ Can define *f* as a **computation graph**

Summary thus Far

- 1. Language Modeling
	- \cdot Key idea: condition on previous words to sample the next word
	- To define the **probability** of the next word, we can…
		- \cdot use conditional independence assumption (*n*-grams)

· throw a.nto alearn one of these? Pansformer-LM)

2. (Module-based) AutoDiff

- A tool for **computing gradients** of a differentiable function, $b = f(a)$
- · Key buil How can we use this stuffand backward() • Can define f as **code** in forward() by chaining existing modules together
- Can define as a **computation graph** 9/4/24 **18**

Stochastic Gradient Descent

• Input: training dataset $\mathcal{D} = \{(\boldsymbol{x}^{(n)}, y^{(n)})\}$ $n=1$ \boldsymbol{N} , step size γ

- 1. Randomly initialize the parameters of your neural LM $\boldsymbol{\theta}^{(0)}$ and set $t = 0$
- 2. While TERMINATION CRITERION is not satisfied
	- a. Bandomly sample a data point from \mathcal{D} , $(x^{(i)}, y^{(i)})$
	- b. Compute the gradient of the loss w.r.t. the sample using (module-based) AutoDiff: $\nabla\!J^{(i)}\!\big(\bm{\theta}^{(t)}\big)$
	- c. Update $\boldsymbol{\theta} \colon \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma \nabla\!J^{(i)}\!\left(\boldsymbol{\theta}^{(t)}\right)$
	- d. Increment $t: t \leftarrow t + 1$

Mini-batch **Stochastic** Gradient Descent

• Input: training dataset $\mathcal{D} = \{(\boldsymbol{x}^{(n)}, y^{(n)})\}$ $n=1$ \boldsymbol{N} , step size γ ,

and batch size B

- 1. Randomly initialize the parameters of your neural LM $\boldsymbol{\theta}^{(0)}$ and set $t = 0$
- 2. While TERMINATION CRITERION is not satisfied
	- a. Randomly sample B data points from D, $\{(\boldsymbol{x}^{(b)}, y^{(b)})\}$ $b=1$ \overline{B}
	- b. Compute the gradient of the loss w.r.t. the sampled *batch* using (module-based) AutoDiff: $\nabla J^{(B)}\big(\boldsymbol{\theta}^{(t)}\big)$
	- c. Update $\boldsymbol{\theta} \colon \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma \nabla\!J^{(B)}\!\left(\boldsymbol{\theta}^{(t)}\right)$
	- d. Increment $t: t \leftarrow t + 1$

Recall: n -gram Language Model **Training**

- \cdot How do we train an n -gram language model?
- Using training data! Simply count frequency of next words, which **maximizes the likelihood** of the data under the various categorial distributions in the model

Narwhals are big aquatic mammals that…

Who knows what **narwhals are** hiding?

Watch out, the **narwhals are coming!**

These **narwhals are** friendly! **Narwhals are a surprisingly large part of the Narwhals are a surprisingly large part of the Narwhin** The **narwhals are** a punk rock **Narwhals are big fans of machine learning Narwhals are** generated by A

same principle of MLE to optimize the parameters of our Neural LMs! \cdot How do we train an n -gram language model?

 Using training data! Simply count frequency of next words, which **maximizes the likelihood** of the data under the We can use the various categorial distributions in the model

Narwhals are big aquatic mammals that…

Who knows what **narwhals are** hiding?

Watch out, the **narwhals are** cominal

These **narwhals are** friendly! **Narwhals are a surprisingly large part of the Narwhals are a surprisingly large part of the Narwhin** The **narwhals are** a punk rock **Narwhals are big fans of machine learning Narwhals are** generated by A

Recurrent Neural **Networks**

$$
h_t = \phi(W_{xh}x_t + W_{hh}h_{t-1} + b_h)
$$

$$
y_t = \text{softmax}(W_{hy}h_t + b_y)
$$

$$
h_t = \phi(W_{xh}x_t + W_{hh}h_{t-1} + b_h)
$$

$$
y_t = \text{softmax}(W_{hy}h_t + b_y)
$$

 $h_t = \phi(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$

 $y_t = \text{softmax}(W_{hv} h_t + b_v)$

- Intuition: we want the true label to have high probability under the output distribution
- Idea: use y^* to index into the desired element of y

Hidden

Labels, y^*

Outputs, y

Units

Hidden

Labels, y^*

Inputs, x

Units

$$
h_t = \phi(W_{xh}x_t + W_{hh}h_{t-1} + b_h)
$$
\n
$$
y_t = \text{softmax}(W_{hy}h_t + b_y)
$$
\n
$$
\text{minimize } \ell_t = -\sum_{c=1}^{C} y_t^*[c] \log y_t[c]
$$
\n
$$
\text{Outputs, } y
$$
\n
$$
\text{Outputs, } \mathbf{y}
$$
\n
$$
\text{Findden}
$$
\n
$$
\mathbf{h}_0
$$
\n
$$
\mathbf{h}_1
$$
\n
$$
\mathbf{h}_2
$$
\n
$$
\mathbf{h}_3
$$
\n
$$
\mathbf{h}_4
$$
\n
$$
\mathbf{h}_5
$$
\n
$$
\mathbf{h}_6
$$
\n
$$
\mathbf{h}_7
$$
\n
$$
\mathbf{h}_8
$$
\n
$$
\mathbf{h}_9
$$
\n
$$
\mathbf{h}_1
$$
\n
$$
\mathbf{h}_2
$$
\n
$$
\mathbf{h}_3
$$
\n
$$
\mathbf{h}_4
$$
\n
$$
\mathbf{h}_5
$$
\n
$$
\mathbf{h}_9
$$
\n
$$
\mathbf{h}_1
$$
\n
$$
\mathbf{h}_2
$$
\n
$$
\mathbf{h}_3
$$
\n
$$
\mathbf{h}_4
$$
\n
$$
\mathbf{h}_5
$$
\n
$$
\mathbf{h}_8
$$
\n
$$
\mathbf{h}_9
$$
\n
$$
\mathbf{h}_9
$$
\n
$$
\mathbf{h}_9
$$
\n
$$
\mathbf{h}_1
$$
\n
$$
\mathbf{h}_2
$$
\n
$$
\mathbf{h}_3
$$
\n
$$
\mathbf{h}_4
$$
\n
$$
\mathbf{h}_5
$$
\n
$$
\mathbf{h}_9
$$
\n<

Recurrent **Neural** Network Language Models: Loss

Labels?

Recurrent **Neural** Network Language Models: Loss

Recurrent **Neural** Network Language Models: Loss

Recurrent Neural Network Language Models: Loss

 h_0

$$
h_{t} = \phi(W_{xh}x_{t} + W_{hh}h_{t-1} + b_{h})
$$
\n
$$
y_{t} = \text{softmax}(W_{hy}h_{t} + b_{y})
$$
\n
$$
\text{minimize } J = \sum_{t=1}^{T} \ell_{t} = \sum_{t=1}^{T} \left(-\sum_{c=1}^{C} y_{t}^{*}[c] \log y_{t}[c] \right)
$$
\n
$$
\text{maxintals}
$$
\n
$$
\text{maxintals}
$$
\n
$$
\text{are generated by}
$$
\n
$$
\text{maxintals}
$$
\n
$$
\text{maxintals}
$$
\n
$$
\text{are generated by}
$$
\n
$$
\text{maxintals}
$$
\

33

Recurrent **Neural** Network Language Models: **Training**

• Each training data point is a *sequence* $\pmb{x}^{(i)} = \left[\pmb{x}^{(i)}_1, ..., \pmb{x}^{(i)}_{T_i} \right]$

 The objective function is the log-likelihood of a mini-batch: $J^{(B)}(\boldsymbol{\theta}) = \log | \cdot |$ $b=1$ \boldsymbol{B} $p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(b)}) = \sum_{i=1}^{b} p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(b)})$ $b=1$ \boldsymbol{B} $\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(b)})$ (assuming i.i.d. sequences) where \log

$$
\log p_{\theta}(x^{(b)}) \coloneqq \log p_{\theta}\left(x_1^{(b)}\middle|\mathbf{h}_1\right) + \dots + \log p_{\theta}\left(x_{T_b}^{(b)}\middle|\mathbf{h}_{T_b}\right)
$$

$$
\coloneqq l_1 + \dots + l_{T_b}
$$

Recurrent Neural Network Language Models: **Training**

Transformer Language Models: **Training**

different (differentiable) computation are **SOS** Narwhals are generated **EOS** $\sum_{i=1}^n$ **Key Takeaway:** Training a transformer LM is equivalent to training an RNN LM: we use the same loss function and optimization algorithms, just with a graph in the middle

Are we really passing in "words" to this transformer?

- How can we break a sequence of text into individual units?
	- Example: "Henry is giving a lecture on transformers"
	- Word-based tokenization:

["henry", "is", "giving" "a", "lecture", "on", "transformers"]

- How can we break a sequence of text into individual units?
	- Example: "Henry is givin' a lectrue on transformers"
	- Word-based tokenization:
		- ["henry", "is", ???, "a", ???, "on", "transformers"]
			- Can have difficulty trading off between vocabulary size and computational tractability
			- Similar words e.g., "transformers" and "transformer" can get mapped to completely disparate representations
			- Typos will typically be out-of-vocabulary (OOV)

- How can we break a sequence of text into individual units?
	- Example: "Henry is givin' a lectrue on transformers"
	- Character-based tokenization:

 \lceil "h", "e", "n", "r", "y", "i", "s", "g", "i", "y", "i", "n", "i", ...]

- Much smaller vocabularies but a lot of semantic meaning is lost…
- Sequences will be much longer than word-based tokenization, potentially causing computational issues
- Can do well on logographic languages e.g., Kanji 漢字

- How can we break a sequence of text into individual units?
	- Example: "Henry is givin' a lectrue on transformers"
	- Subword tokenization:

["henry", "is", "giv", "##in", " ' ", "a", "lect", "#u", "##re", "on", "transform", "##ers"]

- Split long or rare words into smaller, semantically meaningful components or *subwords*
- No out-of-vocabulary words any non-subword token can be constructed from other subwords (all individual characters are subwords)

Okay, but these are still strings: how do I convert these into things my transformer can work with?

- How can we break a sequence of text into individual units?
	- Example: "Henry is givin' a lectrue on transformers"
	- Subword tokenization:
- → ["henry", "is", "giv", "##in", " ' ", "a", "lect", "#u", "##re", "on", "transform", "##ers"]
	- Split long or rare words into smaller, semantically meaningful components or *subwords*
	- No out-of-vocabulary words any non-subword token can be constructed from other subwords (all individual characters are subwords)

Embeddings

- \cdot Given a vocabulary V with $|V|$ tokens:
	- 1. Map each token to a (non-negative) integer
	- 2. Define a $|V| \times d_e$ lookup table, where each row is a dense, numerical vector of length d_e
	- 3. The row corresponding to each token's integer assignment is that token's *embedding*

Are we really passing in "words" to this transformer?

Are we really passing in "words" to this transformer?

 \int ℓ_5 ℓ_6 ℓ_1 ℓ_2 ℓ_3 ℓ_4 \mathbb{R}^n T. **Contract** Transformer Layer 2.1 4.3 7.1 3.2 1.1 0.7 0.1 0.5 1.8 2.2 8.0 5.5 3.8 3.8 1.0 7.6 6.5 5.41 87 11 12 50 7 128 #s **EOS** 9/4/24 **SOS** Narwhal #s are generat #ed are

NO

45

Recall: Transformer **Computational Complexity**

Important!

- RNN computation graph grows **linearly** with the number of input tokens
- Transformer LM computation graph grows **quadratically** with the number of input tokens
- However, this computation (and therefore, the training of transformer LMs) is **highly parallelizable**

Parallelizing Transformer LM Computation

- **Scaled dot-product attention** can be easily parallelized because the attention scores at one timestep do not depend on other timesteps.
- **In multi-headed attention**, each head is also independent of the other heads, which permits yet more parallelism.
- The core computation in attention is **matrix multiplication**, and GPUs/TPUs make this very fast.
- **Model parallelism:** for large models, we can divide the model over multiple GPUs/machines.
- **Key-value caching**: keys and values are re-used over many timesteps so we can cache them for faster access
- **Batching**: rather than process one sequence at a time, transformers take in a *batch*; the computation is identical for each sequence **(if they're of the same length)**

Parallelizing Transformer LM **Computation**

- **Scaled dot-product attention** can be easily parallelized because the attention scores at one timestep do not depend on other timesteps.
- **.** In multi-headed attention, each head is also independent of the other heads, which permits yet more parallelism.
- The core computation in attention is **matrix multiplication**, and GPUs/TPUs make this very fast.
- **Model parallelism:** for large models, we can divide the model over multiple GPUs/machines.
- **Key-value caching**: keys and values are re-used over many timesteps so we can cache them for faster access
- **Batching**: rather than process one sequence at a time, transformers take in a *batch*; the computation is identical for each sequence **(if they're of the same length)**

Batching: Padding & **Truncation** \cdot Given a block size or maximum length, L (typically a power of 2):

- \cdot Truncate sequences longer than L by deleting excess tokens
- Pad sequences shorter than L by adding **PAD** tokens

Batching: Padding & **Truncation** \cdot Given a block size or maximum length, L (typically a power of 2):

- \cdot Truncate sequences longer than L by deleting excess tokens
- Pad sequences shorter than L by adding **PAD** tokens

Batching: Padding & **Truncation** \cdot Given a block size or maximum length, L (typically a power of 2):

- \cdot Truncate sequences longer than L by deleting excess tokens
- Pad sequences shorter than L by adding PAD tokens

Recall: Language Model Generation

- How do we generate new sequences using an RNN language model?
- Exactly the same way we did for an n -gram language model, by sampling from some learned probability

distributions over next words!

Recall: Language Model Generation

- How do we generate new sequences using a transformer language model?
- Exactly the same way we did for an RNN language model, by sampling from some learned probability

distributions over next words!

Outputs

Is this the distributions over next words! only thing we could do?

- How do we generate new sequences using a transformer language model?
- Exactly the same way we did for an RNN language model, by sampling from some learned probability

Outputs

Background: Greedy Search

Start

2

4

3

1

7

3 3 4

3

5 6

4

1

 $\overline{2}$

2

5

State

• **Goal**: find the lowest (total) weight path from the Start State to any End State • **Greedy Search**:

End

States

7

8 <u>وَ</u>

8

- At each node, select the edge with lowest weight
	- **Heuristic**: does *not* necessarily find the lowest weight path

Background: Greedy Search

- **Greedy Search**: • **Goal**: find the lowest (total) weight path from the Start State to any End State
	- At each node, select the edge with lowest weight
		- **Heuristic**: does *not* necessarily find the lowest weight path

Background: Greedy Search

• **Goal**: find the lowest (total) weight path from the Start State to any End State • **Greedy Search**:

- At each node, select the edge with lowest weight
- **Heuristic**: does *not* necessarily find the lowest weight path
- Computation time is **linear** in max path length

Greedy Decoding for Language **Models**

- **Goal**: find the highest probability sequence of tokens
- Nodes are tokens and weights are (negative) log probabilities

- At each node, select the edge with lowest negative log probability
- **Heuristic**: does *not* necessarily find the highest probability output
- Computation time is **linear** in the maximum path length

Ancestral Sampling for Language **Models**

- **Goal**: find the highest probability sequence of tokens
- Nodes are tokens and weights are (negative) log probabilities

- At each node, sample an edge with probability proportional to the negative exp'ed weights
- **Exact** method of *sampling*
- Computation time is **linear** in the maximum path length