
Pretraining vs. finetuning
+ Modern Transformers

(RoPE, GQA, Longformer)

+ CNNs

1

10-423/10-623 Generative AI

Matt Gormley & Henry Chai
Lecture 4

Sep. 9, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 0: PyTorch + Weights & Biases
– Out: Wed, Aug 28
– Due: Mon, Sep 9 at 11:59pm
– unique policy for this assignment: we will grant (essentially) any

and all extension requests

• Quiz 1: Wed, Sep 11
• Homework 1: Generative Models of Text
– Out: Mon, Sep 9
– Due: Mon, Sep 23 at 11:59pm

3

Recap So Far
Deep Learning
• AutoDiff

– is a tool for computing gradients of a
differentiable function, b = f(a)

– the key building block is a module with a
forward() and backward()

– sometimes define f as code in forward()
by chaining existing modules together

• Computation Graphs
– are another way to define f (more

conducive to slides)
– so far, we saw two (deep) computation

graphs
• 1) RNN-LM
• 2) Transformer-LM
• (Transformer-LM was kind of complicated)

Language Modeling
• key idea: condition on previous

words to sample the next word
• to define the probability of the next

word…
– …n-gram LM uses collection of massive

50k-sided dice
– …RNN-LM or Transformer-LM use a

neural network

• Learning an LM
– n-gram LMs are easy to learn: just count

co-occurrences!
– a RNN-LM / Transformer-LM is trained by

optimizing an objective function with
SGD; compute gradients with AutoDiff

4

Two parts: Deep Learning and Language Modeling

PRE-TRAINING VS. FINE-TUNING

5

The Start of Deep Learning

• The architectures of modern deep
learning have a long history:
– 1960s: Rosenblatt’s 3-layer multi-layer

perceptron, ReLU)
– 1970-80s: RNNs and CNNs
– 1990s: linearized self-attention

• The spark for deep learning came in
2006 thanks to pre-training (e.g.,
Hinton & Salakhutdinov, 2006)

6
Figure from Vargas et al. (2017)

Deep Network Training

7

� Idea #3:
1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #2:
1. Supervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #1:
1. Supervised fine-tuning only

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

8

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

9

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

10

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Idea #3: Unsupervised
Pre-training

1. Unsupervised Pre-training
– Use unlabeled data
– Work bottom-up
• Train hidden layer 1. Then fix its parameters.
• Train hidden layer 2. Then fix its parameters.
• …
• Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning
– Use labeled data to train following “Idea #1”
– Refine the features by backpropagation so that they become

tuned to the end-task
11

� Idea #3: (Two Steps)
� Use our original idea, but pick a better starting point
� Train each level of the model in a greedy way

The solution:
Unsupervised pre-training

12

…

…Input

Hidden Layer

Output

Unsupervised pre-
training of the first layer:
• What should it predict?
• What else do we

observe?
• The input!

This topology defines an
Auto-encoder.

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:
• What should it predict?
• What else do we

observe?
• The input!

This topology defines an
Auto-encoder.

13

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
– x’ is the reconstruction of x
– Loss = || x – DECODER(ENCODER(x)) ||2

– Train with the same backpropagation algorithm for 2-layer
Neural Networks with xm as both input and output.

14

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Slide adapted from Raman Arora

DECODER: x’ = h(W’z)

ENCODER: z = h(Wx)

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.

15

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.

16

…

…Input

Hidden Layer

…Hidden Layer

…’ ’ ’

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.

17

…

…Input

Hidden Layer

…Hidden Layer

…Hidden Layer

…’ ’ ’

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.
Supervised fine-tuning
Backprop and update all
parameters

18

…

…Input

Hidden Layer

…Hidden Layer

…Hidden Layer

Output

Deep Network Training

19

� Idea #3:
1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #2:
1. Supervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #1:
1. Supervised fine-tuning only

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

20

Training

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

21

Training

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Transformer Language Model

22

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Generative pre-training for a deep
language model:
• each training example is an

(unlabeled) sentence
• the objective function is the

likelihood of the observed
sentence

Practically, we can batch together
many such training examples to
make training more efficient

Training Data for LLMs

23

GPT-3 Training Data:

Table from http://arxiv.org/abs/2005.14165

http://arxiv.org/abs/2005.14165

Training Data for LLMs

24

The Pile:
• An open source dataset for

training language models
• Comprised of 22 smaller

datasets
• Favors high quality text
• 825 Gb ≈ 1.2 trillion tokens

MODERN TRANSFORMER MODELS

25

Modern Tranformer Models
• PaLM (Oct 2022)

– 540B parameters
– closed source
– Model:

• SwiGLU instead of ReLU, GELU, or Swish
• multi-query attention (MQA) instead of multi-headed attention
• rotary position embeddings
• shared input-output embeddings instead of separate parameter matrices

– Training: Adafactor on 780 billion tokens
• Llama-1 (Feb 2023)

– collection of models of varying parameter sizes: 7B, 13B, 32B, 65B
– semi-open source
– Llama-13B outperforms GPT-3 on average
– Model compared to GPT-3:

• RMSNorm on inputs instead of LayerNorm on outputs
• SwiGLU activation function instead of ReLU
• rotary position embeddings (RoPE) instead of absolute

– Training: AdamW on 1.0 – 1.4 trillion tokens
• Falcon (June - Nov 2023)

– models of size 7B, 40B, 180B
– first fully open source model, Apache 2.0
– Model compared to Llama-1:

• (GQA) instead of multi-headed attention (MHA) or grouped query attention
multi-query attention (MQA)

• rotary position embeddings (worked better than Alibi)
• GeLU instead of SwiGLU

– Training: AdamW on up to 3.5 trillion tokens for 180B model, using z-loss for
stability and weight decay

• Llama-2 (Aug 2023)
– collection of models of varying parameter sizes: 7B, 13B, 70B.
– introduced Llama 2-Chat, fine-tuned as a dialogue agent
– Model compared to Llama-1:

• grouped query attention (GQA) instead of multi-headed attention (MHA)
• context length of 4096 instead of 2048

– Training: AdamW on 2.0 trillion tokens
• Mistral 7B (Oct 2023)

– outperforms Llama-2 13B on average
– introduced Mistral 7B – Instruct, fine-tuned as a dialogue agent
– truly open source: Apache 2.0 license
– Model compared to Llama-2

• sliding window attention (with W=4096) and grouped-query attention
(GQA) instead of just GQA

• context length of 8192 instead of 4096 (can generate sequences up to
length 32K)

• rolling buffer cache (grow the KV cache and the overwrite position i into
position i mod W)

– variant Mixtral offers a mixture of experts (roughly 8 Mistral models)

26

In this section we’ll look at four
techniques:
1. key-value cache (KV cache)
2. rotary position embeddings (RoPE)
3. grouped query attention (GQA)
4. sliding window attention

Key-Value Cache
• At each timestep, we reuse all

previous keys and values (i.e.
we need to cache them)

• But we can get rid of the
queries, similarity scores, and
attention weights (i.e. we can
let them fall out of the cache)

27

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv

a4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this

timestep

ROTARY POSITION EMBEDDINGS (ROPE)

28

Rotary Position Embeddings (RoPE)

29

fq(xt,m) ! RΘ,mWT
q xt

fk(xj ,m) ! RΘ,mWT
k xj

st,j = fk(xj ,m)T fq(xt,m)/
√

|k|,
∀j, twherem = t− j

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk , and the rotary matrix RΘ,m ∈ R

dk×dk is given by:

RΘ,m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2i−1/d, i ∈ [1, 2, . . . , d/2]}

Q: Why does this slide
have so many typos?

A: I’m really not sure. I
very meticulously type
up the latex for my
slides myself and think
carefully about all the
things I put in them.

wrong

wrong

wrong

wrong

wrong

Rotary Position Embeddings (RoPE)

30

Q: Why does this slide
have so many typos?

A: I’m really not sure. I
very meticulously type
up the latex for my
slides myself and think
carefully about all the
things I put in them.

Rotary Position Embeddings (RoPE)
• Rotary position

embeddings are a
kind of relative
position embeddings

• Key idea:
– break each d-

dimensional input
vector into d/2
vectors of length 2

– rotate each of the
d/2 vectors by an
amount scaled by m

– m is the absolute
position of the
query or the key

31
Figure from http://arxiv.org/abs/2104.09864

Rotary Position Embeddings (RoPE)

32

qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk . Herein we use d = dk for brevity.

For some fixed absolute positionm, the rotary matrix RΘ,m ∈ R
dk×dk is given by:

RΘ,m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, . . . , d/2]}

Rotary Position Embeddings (RoPE)

33

Rotary Position Embeddings (RoPE)

35

qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

Because of the block sparse pattern inRθ,m, we can efÏciently com‐
pute thematrix‐vector product ofRθ,m with some arbitrary vector y
in a more efÏcient manner:

RΘ,my =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1
y2
y3
y4
...

yd−1

yd

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊙

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1
cosmθ1
cosmθ2
cosmθ2

...
cosmθd/2
cosmθd/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−y2
y1
−y4
y3
...

−yd
yd−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊙

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Matrix Version of RoPE

36

Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =

⎡

⎢

⎣

1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2

⎤

⎥

⎦

Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

⊙ cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

⊙ sin(C)

Matrix Version of RoPE

37

Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =

⎡

⎢

⎣

1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2

⎤

⎥

⎦

Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

⊙ cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

⊙ sin(C)

Q: Is this slide correct?

A: I’m really not sure.

But I did write it myself!

GROUPED QUERY ATTENTION (GQA)

38

Matrix Version of Multi-Headed (Causal) Attention

39

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))

Recall…

Grouped Query Attention (GQA)

40
Figure from http://arxiv.org/abs/2305.13245

Grouped Query Attention (GQA)
• Key idea: reuse the

same key-value
heads for multiple
different query heads

• Parameters: The
parameter matrices
are all the same size,
but we now have
fewer key/value
parameter matrices
(heads) than query
parameter matrices
(heads)

41

X = [x1, . . . , xT]
T

V(i) = XW(i)
v , ∀i ∈ {1, . . . , hkv}

K(i) = XW(i)
k , ∀i ∈ {1, . . . , hkv}

Q(i,j) = XW(i,j)
q , ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

Figure from http://arxiv.org/abs/2305.13245

• hq = the number of query heads

• hkv = the number of key/value heads

• Assume hq is divisible by hkv

• g = hq/hkv is the size of each group
(i.e. the number of query vectors per key/value vector).

SLIDING WINDOW ATTENTION

42

Sliding Window Attention
Sliding Window Attention
• also called “local attention”

and introduced for the
Longformer model (2020)

• The problem: regular
attention is computationally
expensive and requires a lot
of memory

• The solution: apply a causal
mask that only looks at the
include a window of
(½w+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

43

regular causal attention sliding window attention (w=4)

sliding window attention (w=6)

X′
= softmax

(

QKT

√

dk

+ M
)

V

Sliding Window Attention
Sliding Window Attention
• also called “local attention”

and introduced for the
Longformer model (2020)

• The problem: regular
attention is computationally
expensive and requires a lot
of memory

• The solution: apply a causal
mask that only looks at the
include a window of
(½w+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

44

sliding window attention (w=4)

X′
= softmax

(

QKT

√

dk

+ M
)

V

3 ways you could implement
1. naïve implementation: just do

the matrix multiplication, but
this is still slow

2. for-loop implementation:
asymptotically faster / less
memory, but unusable in
practice b/c for-loops in
PyTorch are too slow

3. sliding chunks implementation:
break into Q and K into
chunks of size w x w, with
overlap of ½w; then compute
full attention within each
chunk and mask out chunk
(very fast/low memory in
practice)

BACKGROUND: COMPUTER VISION

45

Example: Image Classification
• ImageNet LSVRC-2011 contest:
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/

46

47

48

49

Feature Engineering for CV
Edge detection (Canny)

50
Figures from http://opencv.org

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

Figure from Lowe (1999) and Lowe (2004)

Example: Image Classification

51

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

CNNs for Image Recognition

52

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He

CONVOLUTION

55

2D Convolution
• Basic idea:

– Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
– Slide this over an image and compute the “inner product” (similarity) of F and the

corresponding field of the image, and replace the pixel in the center of the field with the
output of the inner product operation

• Key point:
– Different convolutions extract different types of low-level “features” from an image
– All that we need to vary to generate these different features is the weights of F

Slide adapted from William Cohen

y11 = α11x11 + α12x12 + α21x21 + α22x22 + α0

y12 = α11x12 + α12x13 + α21x22 + α22x23 + α0

y21 = α11x21 + α12x22 + α21x31 + α22x32 + α0

y22 = α11x22 + α12x23 + α21x32 + α22x33 + α0

x11 x12 x13

x21 x22 x23

x31 x32 x33

α11 α12

α21 α22

y11 y12

y21 y22

Example: 1 input channel, 1 output channel

Input Kernel Output

2D Convolution
• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

57

0 0 0

0 1 1

0 1 0

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

2D Convolution

58

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

0 0 0

0 1 1

0 1 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

2D Convolution

59

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

2D Convolution

60

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

2D Convolution

61

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

2D Convolution

62

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

2D Convolution

63

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

2D Convolution

64

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

2D Convolution

65

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

2D Convolution

66

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

2D Convolution

67

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

2D Convolution

68

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the

image, and replace the pixel in the center of the field with the output of the inner product operation

Padding
Suppose you want to preserve the size of the original input image in
your convolved image.
You can accomplish this by padding your input image with zeros.

69

Identity
Convolution

Input Image

Convolved Image

0 0 0

0 1 0

0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

Padding
Suppose you want to preserve the size of the original input image in
your convolved image.
You can accomplish this by padding your input image with zeros.

70

0 0 0

0 1 0

0 0 0

Identity
Convolution

Input Image

Convolved Image0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

71

Identity
Convolution

Input Image

Convolved Image

0 0 0

0 1 0

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

72

Input Image

Convolved Image

.1 .1 .1

.1 .2 .1

.1 .1 .1

Blurring
Convolution

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

.1 .2 .3 .3 .3 .2 .1

.2 .4 .5 .5 .5 .4 .1

.3 .4 .2 .3 .6 .3 .1

.3 .5 .4 .4 .2 .1 0

.3 .5 .6 .2 .1 0 0

.2 .4 .3 .1 0 0 0

.1 .1 .1 0 0 0 0

Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

73

Vertical
Edge

Detector

Input Image

Convolved Image

-1 0 1

-1 0 1

-1 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-1 -1 0 0 0 1 1

-2 -1 1 -1 0 2 1

-3 -1 1 -1 1 2 1

-3 -1 2 0 1 1 0

-3 -1 2 1 1 0 0

-2 -1 2 1 0 0 0

-1 0 1 0 0 0 0

Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

74

Horizontal
Edge

Detector

Input Image

Convolved Image

-1 -1 -1

0 0 0

1 1 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-1 -2 -3 -3 -3 -2 -1

-1 -1 -1 -1 -1 -1 0

0 1 1 2 2 2 1

0 -1 -1 0 1 1 0

0 0 1 1 1 0 0

1 2 2 1 0 0 0

1 1 1 0 0 0 0

Convolution Examples

76

Original
Image

Convolution Examples

77

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Smoothing
Convolution

Convolution Examples

78

.01 .04 .06 .04 .01

.04 .19 .25 .19 .04

.06 .25 .37 .25 .06

.04 .19 .25 .19 .04

.01 .04 .06 .04 .01

Gaussian
Blur

Convolution Examples

79

0 -1 0

-1 5 -1

0 -1 0

Sharpening
Kernel

Convolution Examples

80

-1 -1 -1

-1 8 -1

-1 -1 -1

Edge
Detector

2D Convolution
• Basic idea:

– Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
– Slide this over an image and compute the “inner product” (similarity) of F and the

corresponding field of the image, and replace the pixel in the center of the field with the
output of the inner product operation

• Key point:
– Different convolutions extract different types of low-level “features” from an image
– All that we need to vary to generate these different features is the weights of F

Slide adapted from William Cohen

y11 = α11x11 + α12x12 + α21x21 + α22x22 + α0

y12 = α11x12 + α12x13 + α21x22 + α22x23 + α0

y21 = α11x21 + α12x22 + α21x31 + α22x32 + α0

y22 = α11x22 + α12x23 + α21x32 + α22x33 + α0

x11 x12 x13

x21 x22 x23

x31 x32 x33

α11 α12

α21 α22

y11 y12

y21 y22

Example: 1 input channel, 1 output channel

Input Kernel Output

DOWNSAMPLING

82

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

83

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

84

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

85

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

86

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

87

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

88

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

89

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

90

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1

1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

91

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1 0

1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

92

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1 0 0

1 1

1 1

Downsampling by Averaging
• Downsampling by averaging is a special case of convolution

where the weights are fixed to a uniform distribution
• The example below uses a stride of 2

93

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3/4 3/4 1/4

3/4 1/4 0

1/4 0 0

1/4 1/4

1/4 1/4

Max-Pooling
• Max-pooling with a stride > 1 is another form of downsampling
• Instead of averaging, we take the max value within the same range as

the equivalently-sized convolution
• The example below uses a stride of 2

94

Max-
pooling

Input Image
Max-Pooled

Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1 1

1 1 0

1 0 0

xi,j xi,j+1

xi+1,j xi+1,j+1

CONVOLUTIONAL NEURAL NETS

96

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

97

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

98

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

• Convolutional Neural Networks (CNNs) provide
another form of decision function

• Let’s see what they look like…

Convolutional Layer

99

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

.4 .5 .5 .5 .4

.4 .2 .3 .6 .3

.5 .4 .4 .2 .1

.5 .6 .2 .1 0

.4 .3 .1 0 0

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

Learned
Convolution

Input Image

Convolved Image

CNN key idea:
Treat convolution matrix as
parameters and learn them!

Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

100

Architecture #1: LeNet-5

TRAINING CNNS

101

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

102

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

103

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

• Q: Now that we have the CNN
as a decision function, how do
we compute the gradient?

• A: Backpropagation of course!

SGD for CNNs

104

Given x, y∗ and parameters θ = [α,β,W]

J = ℓ(y, y∗)

y = softmax(z(5))

z(5) = linear(z(4),W)

z(4) = relu(z(3))

z(3) = conv(z(2),β)

z(2) = max‐pool(z(1))

z(1) = conv(x,α)

Algorithm 1 Stochastic Gradient Descent (SGD)
1: Initialize θ
2: while not converged do
3: Sample i ∈ {1, . . . , N}
4: Forward: y = hθ(x(i)),
5: J(θ) = ℓ(y, y(i))
6: Backward: Compute∇θJ(θ)
7: Update: θ ← θ − η∇θJ(θ)

Example: Simple CNN Architecture

LAYERS OF A CNN

105

ReLU Layer

107

Output: y ∈ R
K

Forward:

y = σ(x), element‐wise
σ(a) = max(0, a)

Input: x ∈ R
K

Input: ∂J
∂y ∈ R

K

Backward: for each j,

∂J

∂xj

=
∂J

∂yj

∂yj

∂xj

where

∂yj

∂xj

=

{

1 if xj > 0

0 otherwise

Output: ∂J
∂x ∈ R

K

subderivative

max(0,a)

Softmax Layer

109

Output: y ∈ R
K

Forward: for each i,

yi =
exp(xi)

∑K
k=1

exp(xk)

Input: x ∈ R
K

Input: ∂J
∂y ∈ R

K

Backward: for each j,

∂J

∂xj

=

K
∑

i=1

∂J

∂yi

∂yi

∂xj

where

∂yi

∂xj

=

{

yi(1− yi) if i = j

−yiyj otherwise

Output: ∂J
∂x ∈ R

K

…

…

Output

Input

Hidden Layer

…

Forward:

Fully-Connected Layer (3D input)

1. suppose input is a 3D tensor:

2. flatten out tensor into a vector:

3. then push that vector through a
standard linear layer:

111

x̂ = [x1, . . . , x(i×j×k), . . . , x(C×H×W)]

y = α
T x̂ +α0 whereα ∈ R

A×B
, α0 ∈ R

B

|x̂| ∈ R
A
, |y| ∈ R

B

x =

C
W

H

2D Convolution

y
(1)
11 = α

(1)
11 x11 + α

(1)
12 x12 + α

(1)
21 x21 + α

(1)
22 x22 + α

(1)
0

y
(1)
12 = α

(1)
11 x12 + α

(1)
12 x13 + α

(1)
21 x22 + α

(1)
22 x23 + α

(1)
0

y
(1)
21 = α

(1)
11 x21 + α

(1)
12 x22 + α

(1)
21 x31 + α

(1)
22 x32 + α

(1)
0

y
(1)
22 = α

(1)
11 x22 + α

(1)
12 x23 + α

(1)
21 x32 + α

(1)
22 x33 + α

(1)
0

x11 x12 x13

x21 x22 x23

x31 x32 x33

α
(1)
11 α

(1)
12

α
(1)
21 α

(1)
22

y
(1)
11 y

(1)
12

y
(1)
21 y

(1)
22

Example: 1 input channel, 2 output channels

Input Kernel Output

112

y
(2)
11 = α

(2)
11 x11 + α

(2)
12 x12 + α

(2)
21 x21 + α

(2)
22 x22 + α

(2)
0

y
(2)
12 = α

(2)
11 x12 + α

(2)
12 x13 + α

(2)
21 x22 + α

(2)
22 x23 + α

(2)
0

y
(2)
21 = α

(2)
11 x21 + α

(2)
12 x22 + α

(2)
21 x31 + α

(2)
22 x32 + α

(2)
0

y
(2)
22 = α

(2)
11 x22 + α

(2)
12 x23 + α

(2)
21 x32 + α

(2)
22 x33 + α

(2)
0

α
(2)
11 α

(2)
12

α
(2)
21 α

(2)
22

y
(2)
11 y

(2)
12

y
(2)
21 y

(2)
22

Convolution of a Color Image

113

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201623

A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

• Color images consist of 3 floats per pixel for
RGB (red, green blue) color values

• Convolution must also be 3-dimensional

Animation of 3D Convolution

114
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

3D Convolutional Layer

117

…

Cin
Win

Hin

Cin
Kw
Kh

Cin
Kw
Kh

Wout

Hout

Wout

Hout

…

Cout
Wout

Houtkernel 1

kernel C o
ut

input

output j’th slice is
from j’th
kernel

Cin
Win

Hin

Convolution in 3D

Forward:

y
(c′)
h′,w′ = β(c′)

+

Cin∑

c=1

Kh∑

m=1

Kw∑

n=1

x
(c)
h′+ms,w′+ns·α

(c′,c)
m,n

Backward:

∂J

∂α
(c′,c)
m,n

=

Hout∑

h′=1

Wout∑

w′=1

∂J

∂y
(c′)
h′,w′

· x
(c)
h′+ms,w′+ns

∂J

∂β(c′)
=

Hout∑

h′=1

Wout∑

w′=1

∂J

∂y
(c′)
h′,w′

s ∈ Z (stride)

Max-Pooling Layer

121

y11 = max(x11, x12, x21, x22)

y12 = max(x12, x13, x22, x23)

y21 = max(x21, x22, x31, x32)

y22 = max(x22, x23, x32, x33)

x11 x12 x13

x21 x22 x23

x31 x32 x33

y11 y12

y21 y22

Example: 1 input channel, 1 output channel, stride of 1

Input Pool Size Output

Max-Pooling Layer

122

CNN ARCHITECTURES

123

Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

124

Architecture #1: LeNet-5

Architecture #2: AlexNet

125

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

CNNs for Image Recognition

126

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He

Convolutional Neural Network (CNN)

127

Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

Convolutional Neural Network (CNN)

128

Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

Convolutional Neural Network (CNN)

129

Typical Architectures
1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 128, /2

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256, /2

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 512, /2

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

ave pool, fc 1000

7x7 conv, 64, /2, pool/2

AlexNet, 8 layers
(ILSVRC 2012)

Revolution of Depth
ResNet, 152 layers

(ILSVRC 2015)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

VGG, 19 layers
(ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

In-Class Poll

Question:
Why do many layers
used in computer
vision not have
location specific
parameters?

130

Answer:

Convolutional Layer

131

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

θ11 θ12

θ21 θ22

2x2
Convolution

Input Image
θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

3x3
Convolution

θ11 θ12 θ13 θ14

θ21 θ22 θ23 θ24

θ31 θ32 θ33 θ34

θ41 θ42 θ43 θ44

4x4
Convolution

For a convolutional layer, how do we pick the kernel size
(aka. the size of the convolution)?

• A small kernel can only see a very small part of the image,
but is fast to compute

• A large kernel can see more of the image, but at the
expense of speed

CNN VISUALIZATIONS

132

Visualization of CNN
https://adamharley.com/nn_vis/cnn/2d.html

https://adamharley.com/nn_vis/cnn/2d.html

MNIST Digit Recognition with CNNs
(in your browser)

134

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Figure from Andrej Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

CNN Summary

CNNs
– Are used for all aspects of computer vision, and have won

numerous pattern recognition competitions
– Able learn interpretable features at different levels of abstraction
– Typically, consist of convolution layers, pooling layers,

nonlinearities, and fully connected layers

135

