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Reminders

• Homework 0: PyTorch + Weights & Biases
– Out: Wed, Aug 28
– Due: Mon, Sep 9 at 11:59pm
– unique policy for this assignment: we will grant (essentially) any

and all extension requests

• Quiz 1: Wed, Sep 11
• Homework 1: Generative Models of Text
– Out: Mon, Sep 9
– Due: Mon, Sep 23 at 11:59pm
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Recap So Far
Deep Learning
• AutoDiff

– is a tool for computing gradients of a 
differentiable function, b = f(a)

– the key building block is a module with a 
forward() and backward()

– sometimes define f as code in forward() 
by chaining existing modules together

• Computation Graphs
– are another way to define f (more 

conducive to slides)
– so far, we saw two (deep) computation 

graphs
• 1) RNN-LM
• 2) Transformer-LM
• (Transformer-LM was kind of complicated)

Language Modeling
• key idea: condition on previous 

words to sample the next word
• to define the probability of the next 

word…
– …n-gram LM uses collection of massive 

50k-sided dice 
– …RNN-LM or Transformer-LM use a 

neural network

• Learning an LM
– n-gram LMs are easy to learn: just count 

co-occurrences!
– a RNN-LM / Transformer-LM is trained by 

optimizing an objective function with 
SGD; compute gradients with AutoDiff
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Two parts: Deep Learning and Language Modeling



PRE-TRAINING VS. FINE-TUNING
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The Start of Deep Learning

• The architectures of modern deep 
learning have a long history:
– 1960s: Rosenblatt’s 3-layer multi-layer 

perceptron, ReLU )
– 1970-80s: RNNs and CNNs
– 1990s: linearized self-attention

• The spark for deep learning came in 
2006 thanks to pre-training (e.g., 
Hinton & Salakhutdinov, 2006)
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Figure from Vargas et al. (2017) 



Deep Network Training 
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� Idea #3:
1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #2:
1. Supervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #1:
1. Supervised fine-tuning only



Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

% 
Er

ro
r

8

• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
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Idea #3: Unsupervised
Pre-training

1. Unsupervised Pre-training
– Use unlabeled data
– Work bottom-up
• Train hidden layer 1. Then fix its parameters.
• Train hidden layer 2. Then fix its parameters.
• …
• Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning
– Use labeled data to train following “Idea #1”
– Refine the features by backpropagation so that they become 

tuned to the end-task
11

� Idea #3: (Two Steps)
� Use our original idea, but pick a better starting point
� Train each level of the model in a greedy way



The solution:
Unsupervised pre-training
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…

…Input

Hidden Layer

Output

Unsupervised pre-
training of the first layer: 
• What should it predict?
• What else do we 

observe? 
• The input!

This topology defines an 
Auto-encoder.
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Auto-encoder.
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Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
– x’ is the reconstruction of x
– Loss = || x – DECODER(ENCODER(x)) ||2

– Train with the same backpropagation algorithm for 2-layer 
Neural Networks with xm as both input and output.
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…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Slide adapted from Raman Arora

DECODER:  x’ = h(W’z)

ENCODER:  z = h(Wx)



The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
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The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
Supervised fine-tuning
Backprop and update all 
parameters
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Deep Network Training 
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Training
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Training
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Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Generative pre-training for a deep 
language model:
• each training example is an 

(unlabeled) sentence 
• the objective function is the 

likelihood of the observed 
sentence

Practically, we can batch together 
many such training examples to 
make training more efficient



Training Data for LLMs
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GPT-3 Training Data:

Table from http://arxiv.org/abs/2005.14165 

http://arxiv.org/abs/2005.14165


Training Data for LLMs
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The Pile:
• An open source dataset for 

training language models
• Comprised of 22 smaller 

datasets
• Favors high quality text
• 825 Gb ≈ 1.2 trillion tokens 



MODERN TRANSFORMER MODELS
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Modern Tranformer Models
• PaLM (Oct 2022)

– 540B parameters
– closed source
– Model:

• SwiGLU instead of ReLU, GELU, or Swish
• multi-query attention (MQA) instead of multi-headed attention
• rotary position embeddings
• shared input-output embeddings instead of separate parameter matrices

– Training: Adafactor on 780 billion tokens
• Llama-1 (Feb 2023)

– collection of models  of varying parameter sizes: 7B, 13B, 32B, 65B
– semi-open source
– Llama-13B outperforms GPT-3 on average
– Model compared to GPT-3: 

• RMSNorm on inputs instead of LayerNorm on outputs
• SwiGLU activation function instead of ReLU
• rotary position embeddings (RoPE) instead of absolute 

– Training: AdamW on 1.0 – 1.4 trillion tokens
• Falcon (June - Nov 2023)

– models of size 7B, 40B, 180B
– first fully open source model, Apache 2.0
– Model compared to Llama-1:

• (GQA) instead of multi-headed attention (MHA) or grouped query attention 
multi-query attention (MQA)

• rotary position embeddings (worked better than Alibi)
• GeLU instead of SwiGLU

– Training: AdamW on up to 3.5 trillion tokens for 180B model, using z-loss for 
stability and weight decay

• Llama-2 (Aug 2023)
– collection of models  of varying parameter sizes: 7B, 13B, 70B.
– introduced Llama 2-Chat, fine-tuned as a dialogue agent
– Model compared to Llama-1:

• grouped query attention (GQA) instead of multi-headed attention (MHA)
• context length of 4096 instead of 2048

– Training: AdamW on 2.0 trillion tokens
• Mistral 7B (Oct 2023)

– outperforms Llama-2 13B on average
– introduced Mistral 7B – Instruct, fine-tuned as a dialogue agent
– truly open source: Apache 2.0 license
– Model compared to Llama-2

• sliding window attention (with W=4096) and grouped-query attention 
(GQA) instead of just GQA

• context length of 8192 instead of 4096 (can generate sequences up to 
length 32K)

• rolling buffer cache (grow the KV cache and the overwrite position i into 
position i mod W)

– variant Mixtral offers a mixture of experts (roughly 8 Mistral models)
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In this section we’ll look at four 
techniques:
1. key-value cache (KV cache)
2. rotary position embeddings (RoPE)
3. grouped query attention (GQA)
4. sliding window attention



Key-Value Cache
• At each timestep, we reuse all 

previous keys and values (i.e. 
we need to cache them)

• But we can get rid of the 
queries, similarity scores, and 
attention weights (i.e. we can 
let them fall out of the cache)
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q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv

a4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this 

timestep



ROTARY POSITION EMBEDDINGS (ROPE)
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Rotary Position Embeddings (RoPE)
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fq(xt,m) ! RΘ,mWT
q xt

fk(xj ,m) ! RΘ,mWT
k xj

st,j = fk(xj ,m)T fq(xt,m)/
√

|k|,
∀j, twherem = t− j

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk , and the rotary matrix RΘ,m ∈ R

dk×dk is given by:

RΘ,m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2i−1/d, i ∈ [1, 2, . . . , d/2]}

Q: Why does this slide 
have so many typos?

A: I’m really not sure. I 
very meticulously type 
up the latex for my 
slides myself and think 
carefully about all the 
things I put in them.

wrong

wrong

wrong

wrong

wrong



Rotary Position Embeddings (RoPE)
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Rotary Position Embeddings (RoPE)
• Rotary position 

embeddings are a 
kind of relative 
position embeddings

• Key idea:
– break each d-

dimensional input 
vector into d/2 
vectors of length 2

– rotate each of the 
d/2 vectors by an 
amount scaled by m

– m is the absolute 
position of the 
query or the key

31
Figure from http://arxiv.org/abs/2104.09864



Rotary Position Embeddings (RoPE)
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qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk . Herein we use d = dk for brevity.

For some fixed absolute positionm, the rotary matrix RΘ,m ∈ R
dk×dk is given by:

RΘ,m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, . . . , d/2]}



Rotary Position Embeddings (RoPE)
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Rotary Position Embeddings (RoPE)

35

qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

Because of the block sparse pattern inRθ,m, we can efÏciently com‐
pute thematrix‐vector product ofRθ,m with some arbitrary vector y
in a more efÏcient manner:

RΘ,my =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1
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y3
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...

yd−1
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⎟
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⎟

⎟

⎟

⎟

⎟

⎠

⊙

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝
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...
cosmθd/2
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⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−y2
y1
−y4
y3
...

−yd
yd−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊙

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠



Matrix Version of RoPE
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Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =

⎡

⎢

⎣

1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2

⎤

⎥

⎦

Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

⊙ cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

⊙ sin(C)



Matrix Version of RoPE
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Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =

⎡

⎢

⎣

1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2

⎤

⎥

⎦

Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

⊙ cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

⊙ sin(C)

Q: Is this slide correct?

A: I’m really not sure. 

But I did write it myself!



GROUPED QUERY ATTENTION (GQA)
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Matrix Version of Multi-Headed (Causal) Attention

39

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))

Recall…



Grouped Query Attention (GQA)
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Figure from http://arxiv.org/abs/2305.13245 



Grouped Query Attention (GQA)
• Key idea: reuse the 

same key-value 
heads for multiple 
different query heads

• Parameters: The 
parameter matrices 
are all the same size, 
but we now have 
fewer key/value 
parameter matrices 
(heads) than query 
parameter matrices 
(heads)

41

X = [x1, . . . , xT ]
T

V(i) = XW(i)
v , ∀i ∈ {1, . . . , hkv}

K(i) = XW(i)
k , ∀i ∈ {1, . . . , hkv}

Q(i,j) = XW(i,j)
q , ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

Figure from http://arxiv.org/abs/2305.13245 

• hq = the number of query heads

• hkv = the number of key/value heads

• Assume hq is divisible by hkv

• g = hq/hkv is the size of each group
(i.e. the number of query vectors per key/value vector).



SLIDING WINDOW ATTENTION
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Sliding Window Attention
Sliding Window Attention
• also called “local attention” 

and introduced for the 
Longformer model  (2020)

• The problem: regular 
attention is computationally 
expensive and requires a lot 
of memory

• The solution: apply a causal 
mask that only looks at the 
include a window of 
(½w+1) tokens, with the 
rightmost window element 
being the current token
(i.e. on the diagonal)

43

regular causal attention sliding window attention (w=4)

sliding window attention (w=6)

X′
= softmax

(

QKT

√

dk

+ M
)

V



Sliding Window Attention
Sliding Window Attention
• also called “local attention” 

and introduced for the 
Longformer model  (2020)

• The problem: regular 
attention is computationally 
expensive and requires a lot 
of memory

• The solution: apply a causal 
mask that only looks at the 
include a window of 
(½w+1) tokens, with the 
rightmost window element 
being the current token
(i.e. on the diagonal)
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sliding window attention (w=4)

X′
= softmax

(

QKT

√

dk

+ M
)

V

3 ways you could implement
1. naïve implementation: just do 

the matrix multiplication, but 
this is still slow

2. for-loop implementation: 
asymptotically faster / less 
memory, but unusable in 
practice b/c for-loops in 
PyTorch are too slow

3. sliding chunks implementation:
break into Q and K into 
chunks of size w x w, with 
overlap of ½w; then compute 
full attention within each 
chunk and mask out chunk 
(very fast/low memory in 
practice)



BACKGROUND: COMPUTER VISION
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Example: Image Classification
• ImageNet LSVRC-2011 contest: 
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/
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Feature Engineering for CV
Edge detection (Canny)

50
Figures from http://opencv.org

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

Figure from Lowe (1999) and Lowe (2004)



Example: Image Classification
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax



CNNs for Image Recognition
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(slide from Kaiming He’s recent presentation)
Slide from Kaiming He
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2D Convolution
• Basic idea:

– Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
– Slide this over an image and compute the “inner product” (similarity) of F and the 

corresponding field of the image, and replace the pixel in the center of the field with the 
output of the inner product operation

• Key point:
– Different convolutions extract different types of low-level “features” from an image
– All that we need to vary to generate these different features is the weights of F

Slide adapted from William Cohen

y11 = α11x11 + α12x12 + α21x21 + α22x22 + α0

y12 = α11x12 + α12x13 + α21x22 + α22x23 + α0

y21 = α11x21 + α12x22 + α21x31 + α22x32 + α0

y22 = α11x22 + α12x23 + α21x32 + α22x33 + α0

x11 x12 x13

x21 x22 x23

x31 x32 x33

α11 α12

α21 α22

y11 y12

y21 y22

Example: 1 input channel, 1 output channel

Input Kernel Output



2D Convolution
• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation
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0 0 0

0 1 1

0 1 0

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

0 0 0

0 1 1

0 1 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution

60

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



Padding
Suppose you want to preserve the size of the original input image in 
your convolved image.
You can accomplish this by padding your input image with zeros.

69

Identity 
Convolution

Input Image

Convolved Image

0 0 0

0 1 0

0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0



Padding
Suppose you want to preserve the size of the original input image in 
your convolved image.
You can accomplish this by padding your input image with zeros.
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0 0 0

0 1 0

0 0 0

Identity 
Convolution

Input Image

Convolved Image0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0



Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Identity 
Convolution

Input Image

Convolved Image

0 0 0

0 1 0

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0



Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Input Image

Convolved Image

.1 .1 .1

.1 .2 .1

.1 .1 .1

Blurring
Convolution
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Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Vertical 
Edge 

Detector

Input Image

Convolved Image

-1 0 1

-1 0 1

-1 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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-2 -1 1 -1 0 2 1

-3 -1 1 -1 1 2 1

-3 -1 2 0 1 1 0

-3 -1 2 1 1 0 0

-2 -1 2 1 0 0 0

-1 0 1 0 0 0 0



Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Horizontal 
Edge 

Detector

Input Image

Convolved Image

-1 -1 -1

0 0 0

1 1 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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-1 -2 -3 -3 -3 -2 -1

-1 -1 -1 -1 -1 -1 0

0 1 1 2 2 2 1

0 -1 -1 0 1 1 0
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Convolution Examples
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Image



Convolution Examples
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1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Smoothing 
Convolution



Convolution Examples
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.01 .04 .06 .04 .01

.04 .19 .25 .19 .04

.06 .25 .37 .25 .06

.04 .19 .25 .19 .04

.01 .04 .06 .04 .01

Gaussian 
Blur



Convolution Examples

79

0 -1 0

-1 5 -1

0 -1 0

Sharpening 
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Convolution Examples
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2D Convolution
• Basic idea:

– Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
– Slide this over an image and compute the “inner product” (similarity) of F and the 

corresponding field of the image, and replace the pixel in the center of the field with the 
output of the inner product operation

• Key point:
– Different convolutions extract different types of low-level “features” from an image
– All that we need to vary to generate these different features is the weights of F

Slide adapted from William Cohen

y11 = α11x11 + α12x12 + α21x21 + α22x22 + α0

y12 = α11x12 + α12x13 + α21x22 + α22x23 + α0

y21 = α11x21 + α12x22 + α21x31 + α22x32 + α0

y22 = α11x22 + α12x23 + α21x32 + α22x33 + α0

x11 x12 x13

x21 x22 x23

x31 x32 x33

α11 α12

α21 α22

y11 y12

y21 y22

Example: 1 input channel, 1 output channel

Input Kernel Output



DOWNSAMPLING
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

85

Convolution
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Convolved Image1 1 1 1 1 0
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3 3
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0
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3 1 0
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0
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1 0 0 0 0 0
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3 3 1

3 1 0
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1 1
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Downsampling by Averaging
• Downsampling by averaging is a special case of convolution 

where the weights are fixed to a uniform distribution
• The example below uses a stride of 2
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0
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3/4 3/4 1/4

3/4 1/4 0

1/4 0 0
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Max-Pooling
• Max-pooling with a stride > 1 is another form of downsampling
• Instead of averaging, we take the max value within the same range as 

the equivalently-sized convolution
• The example below uses a stride of 2
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Max-
pooling

Input Image
Max-Pooled 

Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1 1

1 1 0

1 0 0

xi,j xi,j+1

xi+1,j xi+1,j+1



CONVOLUTIONAL NEURAL NETS
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

97

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

98

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

• Convolutional Neural Networks (CNNs) provide 
another form of decision function

• Let’s see what they look like…



Convolutional Layer
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0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

.4 .5 .5 .5 .4

.4 .2 .3 .6 .3

.5 .4 .4 .2 .1

.5 .6 .2 .1 0

.4 .3 .1 0 0

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

Learned
Convolution

Input Image

Convolved Image

CNN key idea: 
Treat convolution matrix as 
parameters and learn them!



Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies
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Architecture #1: LeNet-5



TRAINING CNNS
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

102

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

103

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

• Q: Now that we have the CNN 
as a decision function, how do 
we compute the gradient?

• A: Backpropagation of course!



SGD for CNNs
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Given x, y∗ and parameters θ = [α,β,W]

J = ℓ(y, y∗)

y = softmax(z(5))

z(5) = linear(z(4),W)

z(4) = relu(z(3))

z(3) = conv(z(2),β)

z(2) = max‐pool(z(1))

z(1) = conv(x,α)

Algorithm 1 Stochastic Gradient Descent (SGD)
1: Initialize θ
2: while not converged do
3: Sample i ∈ {1, . . . , N}
4: Forward: y = hθ(x(i)),
5: J(θ) = ℓ(y, y(i))
6: Backward: Compute∇θJ(θ)
7: Update: θ ← θ − η∇θJ(θ)

Example: Simple CNN Architecture



LAYERS OF A CNN
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ReLU Layer
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Output: y ∈ R
K

Forward:

y = σ(x), element‐wise
σ(a) = max(0, a)

Input: x ∈ R
K

Input: ∂J
∂y ∈ R

K

Backward: for each j,

∂J

∂xj

=
∂J

∂yj

∂yj

∂xj

where

∂yj

∂xj

=

{

1 if xj > 0

0 otherwise

Output: ∂J
∂x ∈ R

K

subderivative

max(0,a)



Softmax Layer
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Output: y ∈ R
K

Forward: for each i,

yi =
exp(xi)

∑K
k=1

exp(xk)

Input: x ∈ R
K

Input: ∂J
∂y ∈ R

K

Backward: for each j,

∂J

∂xj

=

K
∑

i=1

∂J

∂yi

∂yi

∂xj

where

∂yi

∂xj

=

{

yi(1− yi) if i = j

−yiyj otherwise

Output: ∂J
∂x ∈ R

K

…

…

Output

Input

Hidden Layer

…



Forward:

Fully-Connected Layer (3D input)

1. suppose input is a 3D tensor:

2. flatten out tensor into a vector:

3. then push that vector through a 
standard linear layer:

111

x̂ = [x1, . . . , x(i×j×k), . . . , x(C×H×W )]

y = α
T x̂ +α0 whereα ∈ R

A×B
, α0 ∈ R

B

|x̂| ∈ R
A
, |y| ∈ R

B

x =

C
W

H



2D Convolution

y
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(1)
12 x13 + α

(1)
21 x22 + α

(1)
22 x23 + α

(1)
0

y
(1)
21 = α

(1)
11 x21 + α

(1)
12 x22 + α

(1)
21 x31 + α

(1)
22 x32 + α

(1)
0

y
(1)
22 = α

(1)
11 x22 + α

(1)
12 x23 + α

(1)
21 x32 + α

(1)
22 x33 + α

(1)
0

x11 x12 x13

x21 x22 x23

x31 x32 x33

α
(1)
11 α

(1)
12

α
(1)
21 α

(1)
22

y
(1)
11 y

(1)
12

y
(1)
21 y

(1)
22

Example: 1 input channel, 2 output channels

Input Kernel Output
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Convolution of a Color Image
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A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

• Color images consist of 3 floats per pixel for 
RGB (red, green blue) color values

• Convolution must also be 3-dimensional



Animation of 3D Convolution
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Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

http://cs231n.github.io/convolutional-networks/ 

http://cs231n.github.io/convolutional-networks/


3D Convolutional Layer
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…

Cin
Win

Hin

Cin
Kw
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Cin
Kw
Kh

Wout

Hout

Wout

Hout

…

Cout
Wout

Houtkernel 1

kernel C o
ut

input

output j’th slice is 
from j’th 
kernel

Cin
Win

Hin

Convolution in 3D

Forward:

y
(c′)
h′,w′ = β(c′)

+

Cin∑

c=1

Kh∑

m=1

Kw∑

n=1

x
(c)
h′+ms,w′+ns·α

(c′,c)
m,n

Backward:

∂J

∂α
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h′=1

Wout∑
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∂J

∂y
(c′)
h′,w′

· x
(c)
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∂J

∂β(c′)
=

Hout∑

h′=1

Wout∑

w′=1

∂J

∂y
(c′)
h′,w′

s ∈ Z (stride)



Max-Pooling Layer
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y11 = max(x11, x12, x21, x22)

y12 = max(x12, x13, x22, x23)

y21 = max(x21, x22, x31, x32)

y22 = max(x22, x23, x32, x33)

x11 x12 x13

x21 x22 x23

x31 x32 x33

y11 y12

y21 y22

Example: 1 input channel, 1 output channel, stride of 1

Input Pool Size Output



Max-Pooling Layer
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CNN ARCHITECTURES
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Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies
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Architecture #1: LeNet-5



Architecture #2: AlexNet
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax



CNNs for Image Recognition
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(slide from Kaiming He’s recent presentation)
Slide from Kaiming He



Convolutional Neural Network (CNN)
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Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 



Convolutional Neural Network (CNN)
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Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 



Convolutional Neural Network (CNN)
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Typical Architectures
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AlexNet, 8 layers
(ILSVRC 2012)

Revolution of Depth
ResNet, 152 layers

(ILSVRC 2015)
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VGG, 19 layers
(ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.



In-Class Poll

Question:
Why do many layers 
used in computer 
vision not have 
location specific 
parameters?
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Answer:



Convolutional Layer
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0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

θ11 θ12

θ21 θ22

2x2 
Convolution

Input Image
θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

3x3 
Convolution

θ11 θ12 θ13 θ14

θ21 θ22 θ23 θ24

θ31 θ32 θ33 θ34

θ41 θ42 θ43 θ44

4x4 
Convolution

For a convolutional layer, how do we pick the kernel size 
(aka. the size of the convolution)?

• A small kernel can only see a very small part of the image, 
but is fast to compute

• A large kernel can see more of the image, but at the 
expense of speed



CNN VISUALIZATIONS
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Visualization of CNN
https://adamharley.com/nn_vis/cnn/2d.html 

https://adamharley.com/nn_vis/cnn/2d.html


MNIST Digit Recognition with CNNs 
(in your browser)
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html 

Figure from Andrej Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html


CNN Summary

CNNs
– Are used for all aspects of computer vision, and have won 

numerous pattern recognition competitions
– Able learn interpretable features at different levels of abstraction
– Typically, consist of convolution layers, pooling layers, 

nonlinearities, and fully connected layers
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