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Recall: 
Vision 
Transformer 
(ViT)

39/16/24

 Instead of words as input, the inputs are 𝑃 × 𝑃 pixel 
patches

 Each patch is embedded linearly into a vector of size 1024 

 Uses 1D positional embeddings

 Pre-trained on a large, supervised dataset (e.g., ImageNet 
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929 

https://arxiv.org/pdf/2010.11929


Is this even a 
generative 
model? 

Not 
inherently…

49/16/24

 Instead of words as input, the inputs are 𝑃 × 𝑃 pixel 
patches

 Each patch is embedded linearly into a vector of size 1024 

 Uses 1D positional embeddings

 Pre-trained on a large, supervised dataset (e.g., ImageNet 
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929 

https://arxiv.org/pdf/2010.11929


Common Tasks 
in Computer 
Vision

 Image Classification

 Object Localization

 Object Detection

 Semantic Segmentation

 Instance Segmentation

 Image Captioning

 Image Generation

59/16/24

 Class-conditional 
generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 
generation



Image 
Generation

69/16/24 Source: https://arxiv.org/pdf/1906.00446.pdf 

 Class-conditional 
generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 
generation

sea anemone

brain coral

slug

• Given a class label, sample a new 
image from that class
• Image classification takes an 

image and predicts its label 
using 𝑝 𝑦 𝒙)

• Class-conditional generation 
does this in reverse with 𝑝(𝒙|𝑦)

https://arxiv.org/pdf/1906.00446.pdf


Image 
Generation

79/16/24 Source: https://arxiv.org/pdf/2104.14951.pdf 

 Class-conditional 
generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 
generation

• Given a low-resolution image, 
generate a high-resolution 
reconstruction of the image

https://arxiv.org/pdf/2104.14951.pdf


Image 
Generation

89/16/24 Source: https://arxiv.org/pdf/2111.05826.pdf 

• Inpainting fills in the (pre-specified) missing pixels
• Colorization restores color to a greyscale image
• Uncropping creates a photo-realistic reconstruction 

of a missing side of an image

 Class-conditional 
generation

 Super resolution

 Image Editing

https://arxiv.org/pdf/2111.05826.pdf


Image 
Generation

99/16/24 Source: https://arxiv.org/pdf/1508.06576.pdf 

 Class-conditional 
generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 
generation

• Given two images, present the 
semantic content of the source 
image in the style of the 
reference image

https://arxiv.org/pdf/1508.06576.pdf


Image 
Generation

109/16/24 Source: https://arxiv.org/pdf/2307.01952.pdf 

 Class-conditional 
generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 
generation

• Given a text description, sample 
an image that depicts the prompt

Prompt: A propaganda poster depicting 
a cat dressed as french emperor 

napoleon holding a piece of cheese.

https://arxiv.org/pdf/2307.01952.pdf


Image 
Generation

119/16/24 Source: https://arxiv.org/pdf/2307.01952.pdf 

 Class-conditional 
generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 
generation

Prompt: Epic long distance cityscape 
photo of New York City flooded by the 

ocean and overgrown buildings and 
jungle ruins in rainforest, at sunset, 
cinematic shot, highly detailed, 8k, 

golden light

https://arxiv.org/pdf/2307.01952.pdf


Image 
Generation

129/16/24 Source: https://arxiv.org/pdf/2307.01952.pdf 

 Class-conditional 
generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 
generation

Prompt: close up headshot, futuristic 
young woman, wild hair sly smile in 

front of gigantic UFO, dslr, sharp focus, 
dynamic composition

https://arxiv.org/pdf/2307.01952.pdf


Slide 
Generation?

13Source: https://stablediffusionweb.com/app/image-generator 

 Class-conditional 
generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 
generation

Prompt: powerpoint slide explaining 
generative adversarial networks for a 
generative AI course, easy to follow, 

with a clear explanation of the 
objective function

9/16/24

https://stablediffusionweb.com/app/image-generator


 A GAN consists of two (deterministic) models:

 a generator that takes a vector of random noise as 
input, and generates an image 

 a discriminator that takes in an image classifies 
whether it is real (label = 1) or fake (label = 0) 

 Both models are typically (but not necessarily) neural 
networks

 During training, the GAN plays a two-player minimax game: 
the generator tries to create realistic images to fool the 
discriminator and the discriminator tries to identify the 
real images from the fake ones

Generative 
Adversarial 
Networks 
(GANs)

149/16/24



Generative 
Adversarial 
Networks 
(GANs)

159/16/24

 A GAN consists of two (deterministic) models:

 a generator that takes a vector of random noise as 
input, and generates an image 

 Example generator: DCGAN

 An inverted CNN with four fractionally-strided 
convolution layers that grow the size of the image from 
layer to layer; final layer has three channels to 
generate color images

 During training, the GAN plays a two-player minimax game: 
the generator tries to create realistic images to fool the 
discriminator and the discriminator tries to identify the 
real images from the fake ones

Source: https://arxiv.org/pdf/1511.06434.pdf 

https://arxiv.org/pdf/1511.06434.pdf


Generative 
Adversarial 
Networks 
(GANs)

169/16/24

 A GAN consists of two (deterministic) models:

 a generator that takes a vector of random noise as 
input, and generates an image 

 a discriminator that takes in an image classifies 
whether it is real (label = 1) or fake (label = 0) 

 Example discriminator: PatchGAN

 Traditional CNN that looks 
at each patch of the image 
and tries to predict whether 
it is real or fake; can help 
encourage to generator to 
avoid creating blurry images

Source: https://arxiv.org/pdf/1803.07422.pdf 

https://arxiv.org/pdf/1803.07422.pdf


Generative 
Adversarial 
Networks 
(GANs): 
Training

179/16/24

 A GAN consists of two (deterministic) models:

 a generator that takes a vector of random noise as 
input, and generates an image 

 a discriminator that takes in an image classifies 
whether it is real (label = 1) or fake (label = 0)

 Both models are typically (but not necessarily) neural 
networks

 During training, the GAN plays a two-player minimax game: 
the generator tries to create realistic images to fool the 
discriminator and the discriminator tries to identify the 
real images from the fake ones



GANs: Architecture 
9/16/24 18

𝒛 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒

Generator

fake image

𝒙′  =  𝐺𝜃(𝒛)𝐺𝜃

𝜃

Typically, 𝑝𝑛𝑜𝑖𝑠𝑒 is a standard 
Gaussian i.e., 𝒩(𝟎, 𝜎2𝐼)



GANs: Architecture 
9/16/24 19

fake image

Discriminator p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛) 𝐷𝜙

𝜙



GANs: Architecture 
9/16/24 20

real image

Discriminator p(real | image)

𝒙 ~ 𝒟

𝜙

𝐷𝜙

𝐷𝜙 𝒙



GANs: Architecture 
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fake image

real image

Discriminator

Discriminator

p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛)

p(real | image)

𝐷𝜙

𝒙 ~ 𝒟

𝑦 = 1

𝑦 = 0
𝜙

𝐷𝜙

𝐷𝜙 𝒙



GANs: Architecture 
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Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛)𝐺𝜃

p(real | image)

𝐷𝜙

𝒙 ~ 𝒟

𝑦 = 1

𝑦 = 0
𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’
𝜃 𝜙

𝐷𝜙

𝐷𝜙 𝒙

𝒛 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒

Typically, 𝑝𝑛𝑜𝑖𝑠𝑒 is a standard 
Gaussian i.e., 𝒩(𝟎, 𝜎2𝐼)



Can we backpropagate through 
𝐺𝜃 given that 𝒛 is stochastic?

9/16/24 23

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛)𝐺𝜃

p(real | image)

𝐷𝜙

𝒙 ~ 𝒟

𝑦 = 1

𝑦 = 0
𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’
𝜃 𝜙

𝐷𝜙

𝐷𝜙 𝒙

𝒛 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒

Typically, 𝑝𝑛𝑜𝑖𝑠𝑒 is a standard 
Gaussian i.e., 𝒩(𝟎, 𝜎2𝐼)



Class-conditional GANs
9/16/24 24

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛)𝐺𝜃

p(real | image)

𝐷𝜙

𝒙 ~ 𝒟

𝑦 = 1

𝑦 = 0
𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’
𝜃 𝜙

𝐷𝜙

𝐷𝜙 𝒙

label

Appending a label embedding 
to the input of both the 
generator and discriminator 
allows GANs to generate 
specific classes of images

𝒛 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒



So how do we go about training 
one of these things?

9/16/24 25

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛)𝐺𝜃

p(real | image)

𝐷𝜙

𝒙 ~ 𝒟

𝑦 = 1

𝑦 = 0
𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’
𝜃 𝜙

𝐷𝜙

𝐷𝜙 𝒙

𝒛 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒



GANs: Training 
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𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’

The discriminator is trying to maximize the likelihood of the 
true labels {real = 1, fake = 0} for a fixed generator

The generator is trying to minimize the likelihood of its generated 
(fake) image being classified as fake, according to a fixed discriminator



GANs: Training 
9/16/24 27

𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’

Both objectives (and hence, their sum) are differentiable!

Training alternates between: 
1. Keeping 𝜃 fixed and backpropagating through 𝐷𝜙

2. Keeping 𝜙 fixed and backpropagating through 𝐺𝜃 



GANs: 
Training

289/16/24

 Optimization is like block coordinate descent but instead of 
exact optimization, we take a step of mini-batch SGD

Source: https://arxiv.org/pdf/1406.2661.pdf 

https://arxiv.org/pdf/1406.2661.pdf


But what 
about those 
Vision 
Transformer 
things we 
talked about 
last week?

299/16/24

 Optimization is like block coordinate descent but instead of 
exact optimization, we take a step of mini-batch SGD

Source: https://arxiv.org/pdf/1406.2661.pdf 

https://arxiv.org/pdf/1406.2661.pdf


TransGANs

309/16/24 Source: https://arxiv.org/pdf/2102.07074 

https://arxiv.org/pdf/2102.07074


TransGANs

319/16/24 Source: https://arxiv.org/pdf/2102.07074 

https://arxiv.org/pdf/2102.07074


ViTGANs

329/16/24 Source: https://arxiv.org/pdf/2107.04589 

https://arxiv.org/pdf/2107.04589


ViTGANs

339/16/24 Source: https://arxiv.org/pdf/2107.04589 

”Plausible Baseline” ViTGan generator

https://arxiv.org/pdf/2107.04589


ViTGANs 
Everywhere!

349/16/24 Source: https://github.com/hindupuravinash/the-gan-zoo/tree/master 

https://github.com/hindupuravinash/the-gan-zoo/tree/master


Recall: 
Computer 
Vision 
Timeline

9/16/24 35

1998

LeNet

2009

ImageNet

2012

AlexNet

2013

VAEs

2014

VGG
R-CNN
GANs

2015

Diffusion 
models
ResNet

2017

Transformer

2020

DDPM

2021

ViT
Dall-E
CLIP

2022

Dall-E 2
Imagen
Stable 
diffusion

2023

SDXL
SDXL 
Turbo



Recall: 
Computer 
Vision 
Timeline
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1998

LeNet

2009

ImageNet

2012

AlexNet

2013

VAEs

2014

VGG
R-CNN
GANs

2015

Diffusion 
models
ResNet

2017

Transformer

2020

DDPM

2021

ViT
Dall-E
CLIP

2022

Dall-E 2
Imagen
Stable 
diffusion

2023

SDXL
SDXL 
Turbo



GANs vs. 
Diffusion

9/16/24 37

GAN generated 
images

Diffusion generated 
images

Training 
images

Source: https://medium.com/thedeephub/what-is-the-gan-generative-adversarial-networks-2ed6965c13fb 

https://medium.com/thedeephub/what-is-the-gan-generative-adversarial-networks-2ed6965c13fb


Recall: 
Computer 
Vision 
Timeline

9/16/24 38

1998

LeNet

2009

ImageNet

2012

AlexNet

2013

1. VAEs

2014

VGG
R-CNN
GANs

2015

Diffusion 
models
ResNet

2017

Transformer

2020

2. DDPM

2021

ViT
Dall-E
CLIP

2022

Dall-E 2
Imagen
Stable 
diffusion

2023

SDXL
SDXL 
Turbo



Image 
Generation

 Fundamental challenge: images are incredibly high-
dimensional objects with complex relationships 
between elements

 Idea: learn a low-dimensional representation of images, 
sample points in the low-dimensional space and project 
them up to the original image space

9/16/24 39



9/16/24 40Source: https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_structure.png

Recall: 
Autoencoders

https://en.wikipedia.org/wiki/Autoencoder


Autoencoder Latent Space
9/16/24 41Source: https://www.science.org/doi/10.1126/science.1127647   

 Issue: latent space is sparse…

 Sampling from latent space of an 
autoencoder creates outputs 
that are effectively identical to 
images in the training dataset 

https://www.science.org/doi/10.1126/science.1127647


Autoencoder Latent Space
9/16/24 42Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf 

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


Variational 
Autoencoder Latent Space

9/16/24 43Source: https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be1c038f2 

https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be1c038f2


Variational 
Autoencoder: 
Network 
Perspective

9/16/24 44Figure courtesy of Zack Lipton



Variational 
Autoencoder: 
Network 
Perspective

9/16/24 45Figure courtesy of Zack Lipton

 Encoder learns a mean vector and 
a (diagonal) covariance matrix for 
each input

 These are used to sample a latent 
representation e.g.,

𝒛 𝑖 ∣ 𝒙 𝑖 ∼ 𝒩 𝜇𝜽 𝒙 𝑖 , 𝜎𝜽
2 𝒙 𝑖



Variational 
Autoencoder: 
Network 
Perspective

9/16/24 46Figure courtesy of Zack Lipton

 Decoder tries to minimize the 
reconstruction error in 

expectation between 𝒙 𝑖  and a 

sample from another learned 
(conditional) distribution e.g., 

ෝ𝒙 𝑖 ∣ 𝒛 𝑖 ∼ 𝒩 𝜇𝝓 𝒛 𝑖 , 𝜎𝝓
2 𝒛 𝑖



Variational 
Autoencoder: 
Network 
Perspective

9/16/24 47Figure courtesy of Zack Lipton

 Decoder tries to maximize the 

likelihood of the true 𝒙 𝑖  under 

another learned (conditional) 
distribution e.g., 

ෝ𝒙 𝑖 ∣ 𝒛 𝑖 ∼ 𝒩 𝜇𝝓 𝒛 𝑖 , 𝜎𝝓
2 𝒛 𝑖



Variational 
Autoencoder: 
Network 
Perspective

9/16/24 48Figure courtesy of Zack Lipton

 Decoder tries to minimize the 
negative log-likelihood of the true 

𝒙 𝑖  under another learned 

(conditional) distribution e.g., 

ෝ𝒙 𝑖 ∣ 𝒛 𝑖 ∼ 𝒩 𝜇𝝓 𝒛 𝑖 , 𝜎𝝓
2 𝒛 𝑖



Variational 
Autoencoder: 
Network 
Perspective

9/16/24 49Figure courtesy of Zack Lipton

 Objective: minimize the negative log-likelihood of the dataset 
plus a regularization term that encourages a dense latent space

𝐽 𝜽, 𝝓 = 
𝑖=1

𝑁

ℓ𝑖 𝜽, 𝝓

ℓ𝑖 𝜽, 𝝓 = −𝔼𝑞𝜽 𝒛∣𝒙 𝑖 log 𝑝𝝓 𝒙 𝑖 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 𝑖 ∥ 𝑝 𝒛



 For two distributions 𝑞(𝑥) and 𝑝(𝑥) over 𝑥 ∈ 𝒳, the 
Kullback-Leibler (KL) divergence is

𝐾𝐿(𝑞| 𝑝 = 𝔼𝑞 log
𝑞 𝑥
𝑝 𝑥

= 
𝑥∈𝒳

𝑞 𝑥 log
𝑞 𝑥
𝑝 𝑥

 The KL divergence

1. measures the proximity of two distributions 𝑞 and 𝑝

2. is minimized when 𝑞(𝑥) = 𝑝(𝑥) for all 𝑥 ∈ 𝒳 

3. is not symmetric: 𝐾𝐿(𝑞 || 𝑝) ≠ 𝐾𝐿(𝑝 || 𝑞) 

KL Divergence

9/16/24 50



KL Divergence
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 For two distributions 𝑞(𝑥) and 𝑝(𝑥) over 𝑥 ∈ 𝒳, the 
Kullback-Leibler (KL) divergence is

𝐾𝐿(𝑞| 𝑝 = 𝔼𝑞 log
𝑞 𝑥
𝑝 𝑥

= න
𝑥∈𝒳

𝑞 𝑥 log
𝑞 𝑥
𝑝 𝑥

𝑑𝑥

 The KL divergence

1. measures the proximity of two distributions 𝑞 and 𝑝

2. is minimized when 𝑞(𝑥) = 𝑝(𝑥) for all 𝑥 ∈ 𝒳 

3. is not symmetric: 𝐾𝐿(𝑞 || 𝑝) ≠ 𝐾𝐿(𝑝 || 𝑞) 



KL Divergence:
Example
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 Keeping all else constant, consider the effect of differences 
between 𝑝 and 𝑞 for certain 𝑥’ on 𝐾𝐿(𝑞 || 𝑝)

 KL divergence wants good approximations for values with 
high probability under 𝑞

 KL divergence does not really care about values with low 
probability under 𝑞

𝑥’ 𝑞(𝑥’) 𝑝(𝑥’) 𝑞 𝑥’ log
𝑞 𝑥’
𝑝 𝑥’

effect on 
𝐾𝐿(𝑞 || 𝑝)

1 0.9 0.9 0 no increase
2 0.9 0.1 1.97 big increase
3 0.1 0.9 −0.21 little decrease
4 0.1 0.1 0 little decrease



KL Divergence:
In-class 
Exercise

9/16/24 53

 Which 𝑞 minimizes 𝐾𝐿(𝑞 || 𝑝) for the given 𝑝?

2
-2

2-2

2
-2

2-22
-2

2-2

2
-2

2-2

2
-2

2-2



Variational 
Autoencoder: 
Network 
Perspective
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 Objective: minimize the negative log-likelihood of the dataset 
plus a regularization term that encourages a dense latent space

𝐽 𝜽, 𝝓 = 
𝑖=1

𝑁

ℓ𝑖 𝜽, 𝝓

ℓ𝑖 𝜽, 𝝓 = −𝔼𝑞𝜽 𝒛∣𝒙 𝑖 log 𝑝𝝓 𝒙 𝑖 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 𝑖 ∥ 𝑝 𝒛



So what should 
we set 𝑝 to?
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 Objective: minimize the negative log-likelihood of the dataset 
plus a regularization term that encourages a dense latent space

𝐽 𝜽, 𝝓 = 
𝑖=1

𝑁

ℓ𝑖 𝜽, 𝝓

ℓ𝑖 𝜽, 𝝓 = −𝔼𝑞𝜽 𝒛∣𝒙 𝑖 log 𝑝𝝓 𝒙 𝑖 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 𝑖 ∥ 𝑝 𝒛



Variational 
Autoencoder: 
Network 
Perspective
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 Objective: minimize the negative log-likelihood of the dataset 
plus a regularization term that encourages a dense latent space

𝐽 𝜽, 𝝓 = 
𝑖=1

𝑁

ℓ𝑖 𝜽, 𝝓

ℓ𝑖 𝜽, 𝝓 ≈ − 
𝑠=1

𝑆

log 𝑝𝝓 𝒙 𝑖 𝒛𝑠 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 𝑖 ∥ 𝑝 𝒛

for samples 𝒛1, … , 𝒛𝑆 ∼ 𝑞𝜽 𝒛 ∣ 𝒙 𝑖



Can we 
backpropagate 
through 𝑞𝜃 
given that 
samples of 𝒛 
are stochastic?
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 Objective: minimize the negative log-likelihood of the dataset 
plus a regularization term that encourages a dense latent space

𝐽 𝜽, 𝝓 = 
𝑖=1

𝑁

ℓ𝑖 𝜽, 𝝓

ℓ𝑖 𝜽, 𝝓 ≈ − 
𝑠=1

𝑆

log 𝑝𝝓 𝒙 𝑖 𝒛𝑠 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 𝑖 ∥ 𝑝 𝒛

for samples 𝒛1, … , 𝒛𝑆 ∼ 𝑞𝜽 𝒛 ∣ 𝒙 𝑖



Reparameterization 
Trick
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 Objective: minimize the negative log-likelihood of the dataset 
plus a regularization term that encourages a dense latent space

𝐽 𝜽, 𝝓 = 
𝑖=1

𝑁

ℓ𝑖 𝜽, 𝝓

ℓ𝑖 𝜽, 𝝓 ≈ − 
𝑠=1

𝑆

log 𝑝𝝓 𝒙 𝑖 𝒛𝑠 𝜽 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 𝑖 ∥ 𝑝 𝒛

for 𝒛𝑠 𝜽 = 𝜇𝜽 𝒙 𝑖 + 𝝈𝜽 𝒙 𝑖 ۨ 𝝐𝑠 where 𝝐𝒔 ∼ 𝑁 𝟎, 𝐼  
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Trick
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 Objective: minimize the negative log-likelihood of the dataset 
plus a regularization term that encourages a dense latent space

𝐽 𝜽, 𝝓 = 
𝑖=1

𝑁

ℓ𝑖 𝜽, 𝝓

ℓ𝑖 𝜽, 𝝓 ≈ − 
𝑠=1

𝑆

log 𝑝𝝓 𝒙 𝑖 𝒛𝑠 𝜽 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 𝑖 ∥ 𝑝 𝒛

for 𝒛𝑠 𝜽 = 𝜇𝜽 𝒙 𝑖 + 𝝈𝜽 𝒙 𝑖 ۨ 𝝐𝑠 where 𝝐𝒔 ∼ 𝑁 𝟎, 𝐼  

𝜖

𝓏



Variational Autoencoder: Objective Function
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ℓ𝑖 𝜽, 𝝓 ≈ − 
𝑠=1

𝑆

log 𝑝𝝓 𝒙 𝑖 𝒛𝑠 𝜽 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 𝑖 ∥ 𝑝 𝒛

ℓ𝑖 𝜽, 𝝓 = −𝔼𝑞𝜽 𝒛∣𝒙 𝑖 log 𝑝𝝓 𝒙 𝑖 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 𝑖 ∥ 𝑝 𝒛

ℓ𝑖 𝜽, 𝝓 = − 
𝑠=1

𝑆

log 𝒩(𝒙 𝑖 ; 𝝁𝝓 𝒛𝑠 𝜽 , 𝝈𝝓
2 𝒛𝑠 𝜽

ℓ𝑖 𝜽, 𝝓 = +𝐾𝐿 𝒩(𝝁𝜽 𝒙 𝑖 , 𝝈𝜽
2 𝒙 𝑖 ∥ 𝒩(𝟎, 𝐼

ℓ𝑖 𝜽, 𝝓 = − 
𝑠=1

𝑆

log 𝒩(𝒙 𝑖 ; 𝝁𝝓 𝝁𝜽 𝒙 𝑖 + 𝝈𝜽 𝒙 𝑖 ۨ 𝝐𝑠 , 𝝈𝝓
2 𝝁𝜽 𝒙 𝑖 + 𝝈𝜽 𝒙 𝑖 ۨ 𝝐𝑠

ℓ𝑖 𝜽, 𝝓 = +𝐾𝐿 𝒩(𝝁𝜽 𝒙 𝑖 , 𝝈𝜽
2 𝒙 𝑖 ∥ 𝒩(𝟎, 𝐼



Variational 
Autoencoder: 
Latent Space
Visualization

9/16/24 61Source: https://arxiv.org/pdf/1312.6114.pdf 

https://arxiv.org/pdf/1312.6114.pdf


Variational 
Autoencoder: 
Generated 
Samples…
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Three Types of 
Graphical 
Models

63

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed 
Graphical Model

Undirected 
Graphical Model Factor Graph
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Directed 
Graphical 
Models a.k.a. 
Bayesian 
Networks

64

X1

X3X2

X4 X5

𝑃 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5 = 𝑃 𝑋1  
𝑃 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5  ∗ 𝑃 𝑋2|𝑋1  
𝑃 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5  ∗ 𝑃 𝑋3  
𝑃 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5  ∗ 𝑃 𝑋4|𝑋2, 𝑋3  
𝑃 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5  ∗ 𝑃 𝑋5|𝑋3  

9/16/24



Directed 
Graphical 
Models a.k.a. 
Bayesian 
Networks

65

X1

X3X2

X4 X5

𝑃 𝑋1, … , 𝑋𝐷 = ෑ
𝑑=1

𝐷

𝑃 𝑋𝑑 parents 𝑋𝑑

A Bayesian Network consists of:
• a graph 𝐺 (the qualitative specification), which can be

• specified using prior knowledge / domain expertise
• learned from the training data (model selection)

• conditional probabilities (the quantitative specification)
• these will depend on the relative types of the variables

9/16/24
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