10-423/623: Generative AI Lecture 6 – Generative Adversarial Networks and Variational Autoencoders

Henry Chai & Matt Gormley

9/16/24

Front Matter

Announcements:

HW1 released 9/9, due 9/23 at 11:59 PM

Recall: Vision Transformer (ViT)

- \cdot Instead of words as input, the inputs are $P \times P$ pixel *patches*
- Each patch is embedded linearly into a vector of size 1024
- Uses 1D positional embeddings
- Pre-trained on a large, supervised dataset (e.g., ImageNet 21K, JFT-300M)

Is this even a generative model?

Not inherently…

- \cdot Instead of words as input, the inputs are $P \times P$ pixel *patches*
- Each patch is embedded linearly into a vector of size 1024
- Uses 1D positional embeddings
- Pre-trained on a large, supervised dataset (e.g., ImageNet 21K, JFT-300M)

Common Tasks in Computer Vision

- **· Image Classification**
- Object Localization
- Object Detection
- **· Semantic Segmentation**
- **· Instance Segmentation**
- **· Image Captioning**
- **Image Generation**
- Class-conditional generation
- **· Super resolution**
- Image Editing
- Style transfer
- Text-to-image (TTI) generation

sea anemone

brain coral

slug

- Given a class label, sample a new image from that class
	- Image classification takes an image and predicts its label using $p(y|x)$
	- Class-conditional generation does this in reverse with $p(x|y)$
- **Class-conditional generation**
- Super resolution
- Image Editing
- Style transfer
- Text-to-image (TTI) generation

• Given a low-resolution image, generate a high-resolution reconstruction of the image

- Class-conditional generation
- **· Super resolution**
- Image Editing
- Style transfer
- Text-to-image (TTI) generation

- Class-conditional generation
- Super resolution
- **· Image Editing**
- **Inpainting** fills in the (pre-specified) missing pixels
- **Colorization** restores color to a greyscale image
- **Uncropping** creates a photo-realistic reconstruction of a missing side of an image

Given two images, present the semantic content of the *source* image in the style of the *reference* image

- Class-conditional generation
- **· Super resolution**
- Image Editing
- **· Style transfer**
- Text-to-image (TTI) generation

Prompt: A propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese.

• Given a text description, sample an image that depicts the prompt

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- **Text-to-image (TTI) generation**

Prompt: Epic long distance cityscape photo of New York City flooded by the ocean and overgrown buildings and jungle ruins in rainforest, at sunset, cinematic shot, highly detailed, 8k,

golden light

- Class-conditional generation
- **· Super resolution**
- Image Editing
- Style transfer
- **Text-to-image (TTI) generation**

Prompt: close up headshot, futuristic young woman, wild hair sly smile in front of gigantic UFO, dslr, sharp focus, dynamic composition

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- **Text-to-image (TTI) generation**

Slide Generation?

Prompt: powerpoint slide explaining generative adversarial networks for a generative AI course, easy to follow, with a clear explanation of the objective function

- Class-conditional generation
- Super resolution
- · Image Editing
- Style transfer
- **Text-to-image (TTI) generation**

Generative Adversarial **Networks** (GANs)

- A GAN consists of two (deterministic) models:
	- a **generator** that takes a vector of random noise as input, and generates an image
	- a **discriminator** that takes in an image classifies whether it is real (label = 1) or fake (label = 0)
	- Both models are typically (but not necessarily) neural networks

Generative Adversarial **Networks** (GANs)

- A GAN consists of two (deterministic) models:
	- a **generator** that takes a vector of random noise as input, and generates an image
- Example generator: DCGAN
	- An inverted CNN with four *fractionally-strided* convolution layers that grow the size of the image from layer to layer; final layer has three channels to generate color images

Generative Adversarial Networks (GANs)

- A GAN consists of two (deterministic) models:
	- a **generator** that takes a vector of random noise as input, and generates an image
	- a **discriminator** that takes in an image classifies whether it is real (label = 1) or fake (label = 0)
- Example discriminator: PatchGAN
	- Traditional CNN that looks at each patch of the image and tries to predict whether it is real or fake; can help encourage to generator to avoid creating blurry images

Generative Adversarial Networks (GANs): **Training**

- A GAN consists of two (deterministic) models:
	- a **generator** that takes a vector of random noise as input, and generates an image
	- a **discriminator** that takes in an image classifies whether it is real (label = 1) or fake (label = 0)
	- Both models are typically (but not necessarily) neural networks
- During training, the GAN plays a two-player minimax game: the generator tries to create realistic images to fool the discriminator and the discriminator tries to identify the real images from the fake ones

Typically, p_{noise} is a standard Gaussian i.e., $\mathcal{N}(\mathbf{0}, \sigma^2 I)$

Can we backpropagate through G_{θ} given that $\mathbf z$ is stochastic?

Class-conditional GANs

So how do we go about training one of these things?

The discriminator is trying to maximize the likelihood of the

true labels {real = 1, fake = 0 } for a fixed generator

$$
\max_{\phi} \log \left(D_{\phi}(\mathbf{x}^{(i)}) \right) + \log \left(1 - D_{\phi}(G_{\theta}(\mathbf{z}^{(i)})) \right)
$$

$$
\min_{\theta} \log \left(1 - D_{\phi}(G_{\theta}(\mathbf{z}^{(i)})) \right)
$$

The generator is trying to minimize the likelihood of its generated

(fake) image being classified as fake, according to a fixed discriminator

GANs: Training

Both objectives (and hence, their sum) are differentiable!

$$
\begin{aligned} & \max_{\phi} \log\left(D_{\phi}(\mathbf{x}^{(i)})\right) + \log\left(1 - D_{\phi}(G_{\theta}(\mathbf{z}^{(i)}))\right) \\ & \min_{\theta} \log\left(1 - D_{\phi}(G_{\theta}(\mathbf{z}^{(i)}))\right) \end{aligned}
$$

Training alternates between:

- 1. Keeping θ fixed and backpropagating through D_{ϕ}
- 2. Keeping ϕ fixed and backpropagating through G_{θ}

GANs: Training

GANs: **Training** **Algorithm 1** Minibatch stochastic gradient descent training of **propertive** adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparamete. We used $k = 1$, Ne least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
	- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\rm data}({\bm x}).$
	- Update the discriminator by ascending its stochastic gradient:

$$
\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].
$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$
\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).
$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

 Optimization is like block coordinate descent but instead of exact optimization, we take a step of mini-batch SGD

But what about those Vision Transformer things we talked about last week?

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used $k = 1$, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{data}(\boldsymbol{x})$.
- Update the discriminator by ascending its stochastic gradient:

$$
\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].
$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$
\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).
$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

 Optimization is like block coordinate descent but instead of exact optimization, we take a step of mini-batch SGD

TransGANs

Figure 2: The pipeline of the pure transform-based generator and discriminator of TransGAN.

9/16/24 Source: <https://arxiv.org/pdf/2102.07074> **30**

TransGANs

Figure 3: Grid Self-Attention across different transformer stages. We replace Standard Self-Attention with Grid Self-Attention when the resolution is higher than 32×32 and the grid size is set to be 16×16 by default.

9/16/24 Source: <https://arxiv.org/pdf/2102.07074> **31**

ViTGANs

Discriminator

Figure 1: Overview of the proposed ViTGAN framework. Both the generator and the discriminator are designed based on the Vision Transformer (ViT). Discriminator score is derived from the classification embedding (denoted as [*] in the Figure). The generator generates pixels patch-by-patch based on patch embeddings.

ViTGANs

GANS Everywhere!

Cumulative number of named GAN papers by month

Recall: Computer Vision **Timeline**

Recall: Computer Vision **Timeline**

GANS VS. **Diffusion**

9/16/24 Source: <u><https://medium.com/thedeephub/what-is-the-gan-generative-adversarial-networks-2ed6965c13fb></u>

Recall: Computer Vision **Timeline**

- Fundamental challenge: images are incredibly highdimensional objects with complex relationships between elements
- Idea: learn a low-dimensional representation of images, sample points in the low-dimensional space and project them up to the original image space

Recall: Autoencoders

- Issue: latent space is sparse...
	- Sampling from latent space of an autoencoder creates outputs that are effectively identical to images in the training dataset

Autoencoder Latent Space

Autoencoder Latent Space

Variational Autoencoder Latent Space

- Encoder learns a mean vector and a (diagonal) covariance matrix for each input
- These are used to *sample* a latent representation e.g., $\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)} \sim \mathcal{N}\left(\mu_{\boldsymbol\theta}\!\left(\mathbf{x}^{(i)}\right)\!, \sigma^2_{\boldsymbol\theta}\!\left(\mathbf{x}^{(i)}\right)\!,$

 Decoder tries to minimize the reconstruction error *in expectation* between $x^{(i)}$ and a sample from another learned (conditional) distribution e.g., $\widehat{\pmb{x}}^{(i)} \mid \pmb{z}^{(i)} \thicksim \mathcal{N}\left(\mu_{\boldsymbol{\phi}}\!\left(\pmb{z}^{(i)}\right)\!, \sigma_{\boldsymbol{\phi}}^2\!\left(\pmb{z}^{(i)}\right)\!,$

 Decoder tries to maximize the likelihood of the true $x^{(i)}$ under another learned (conditional) distribution e.g., $\widehat{\pmb{x}}^{(i)} \mid \pmb{z}^{(i)} \thicksim \mathcal{N}\left(\mu_{\boldsymbol{\phi}}\!\left(\pmb{z}^{(i)}\right)\!, \sigma_{\boldsymbol{\phi}}^2\!\left(\pmb{z}^{(i)}\right)\!,$

 Decoder tries to minimize the negative log-likelihood of the true $x^{(i)}$ under another learned (conditional) distribution e.g., $\widehat{\pmb{x}}^{(i)} \mid \pmb{z}^{(i)} \thicksim \mathcal{N}\left(\mu_{\boldsymbol{\phi}}\!\left(\pmb{z}^{(i)}\right)\!, \sigma_{\boldsymbol{\phi}}^2\!\left(\pmb{z}^{(i)}\right)\!,$

Н

Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

$$
J(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{i=1}^{N} \ell_i(\boldsymbol{\theta}, \boldsymbol{\phi})
$$

$$
\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\mathbb{E}_{q_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)})}[\log p_{\boldsymbol{\phi}}(\mathbf{x}^{(i)}|\mathbf{z})] + KL\left(q_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)}) \parallel p(\mathbf{z})\right)
$$

 Objective: minimize the negative log-likelihood of the dataset plus a *regularization term* that encourages a dense latent space $J(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{\boldsymbol{\beta} \in \mathcal{A}}$ $i=1$ \boldsymbol{N} $\ell_i(\bm{\theta},\bm{\phi})$ $\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\mathbb{E}_{q_{\boldsymbol{\theta}}(\mathbf{z}|\boldsymbol{x}^{(i)})} [\log p_{\boldsymbol{\phi}}(\boldsymbol{x}^{(i)}|\mathbf{z})] + KL(q_{\boldsymbol{\theta}}(\mathbf{z}|\boldsymbol{x}^{(i)}) \mid p(\mathbf{z}))$

KL Divergence

For two distributions $q(x)$ and $p(x)$ over $x \in \mathcal{X}$, the **Kullback-Leibler (KL) divergence** is

$$
KL(q||p) = \mathbb{E}_q \left[\log \frac{q(x)}{p(x)} \right] = \sum_{\mathbf{x} \in \mathbf{X}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{q(\mathbf{x})}
$$

KL Divergence

• For two distributions $q(x)$ and $p(x)$ over $x \in \mathcal{X}$, the **Kullback-Leibler (KL) divergence** is $KL(q||p) = \mathbb{E}_q \left[\log \frac{q(x)}{n(x)} \right]$ $=$ \setminus $q(x)$ log $\frac{q(x)}{q(x)}$ $\frac{2}{\sqrt{2}}$

 $p(x$

- The KL divergence
	- 1. measures the **proximity** of two distributions q and p

 \mathcal{L}

 \mathcal{P}

- 2. is minimized when $q(x) = p(x)$ for all $x \in \mathcal{X}$
- 3. is **not** symmetric: $KL(q || p) \neq KL(p || q)$

KL Divergence: Example

• Keeping all else constant, consider the effect of differences between p and q for certain x' on $KL(q || p)$

KL Divergence: In-class Exercise

• Which q minimizes $KL(q || p)$ for the given p ?

 Objective: minimize the negative log-likelihood of the dataset plus a *regularization term* that encourages a dense latent space $J(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_i \ell_i(\boldsymbol{\theta}, \boldsymbol{\phi})$ $i=1$ \boldsymbol{N}

 $\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\mathbb{E}_{q_{\boldsymbol{\theta}}(\mathbf{z}|\boldsymbol{x}^{(i)})} [\log p_{\boldsymbol{\phi}}(\boldsymbol{x}^{(i)}|\mathbf{z})] + KL(q_{\boldsymbol{\theta}}(\mathbf{z}|\boldsymbol{x}^{(i)}) \parallel p(\mathbf{z}))$

So what should we set p to?

 Objective: minimize the negative log-likelihood of the dataset plus a *regularization term* that encourages a **dense latent space** $J(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{\boldsymbol{\beta} \in \mathcal{A}}$ $i=1$ \boldsymbol{N} $\ell_i(\bm{\theta},\bm{\phi})$ $\ell_i(\theta, \phi) = -\mathbb{E}_{q_{\theta}(z|x^{(i)})} [\log p_{\phi}(x^{(i)}|z)] + KL(q_{\theta}(z|x^{(i)}) || p(z))$

 Objective: minimize the negative log-likelihood of the dataset plus a *regularization term* that encourages a dense latent space $J(\theta, \phi) = \sum$ $i=1$ \boldsymbol{N} $\ell_i(\bm{\theta},\bm{\phi})$ $\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) \approx -\left| \begin{array}{c} \end{array} \right\rangle$ $s=1$ \mathcal{S}_{0} $\log p_{\boldsymbol{\phi}}\big(\pmb{x}^{(i)}\big|\pmb{z}_s\big)\Big) + \textit{KL}\big(\textit{q}_{\boldsymbol{\theta}}\big(\pmb{z}\big|\pmb{x}^{(i)}\big)\parallel p(\pmb{z})\big)$

$$
{}^{\frac{9}{16/24}} \quad \text{for samples } z_1, ..., z_S \sim q_{\theta}(z \mid x^{(i)})
$$

Can we backpropagate through q_{θ} given that samples of z are stochastic?

 Objective: minimize the negative log-likelihood of the dataset plus a *regularization term* that encourages a dense latent space $J(\theta, \phi) = \sum$ $i=1$ \boldsymbol{N} $\ell_i(\bm{\theta},\bm{\phi})$ $\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) \approx -\left| \begin{array}{c} \end{array} \right\rangle$ $s=1$ \mathcal{S}_{0} $\log p_{\boldsymbol{\phi}}\big(\pmb{x}^{(i)}\big|\pmb{z}_s\big)\Big) + \textit{KL}\big(\textit{q}_{\boldsymbol{\theta}}\big(\pmb{z}\big|\pmb{x}^{(i)}\big)\parallel p(\pmb{z})\big)$

$$
e_{\frac{9}{16/24}} \quad \text{for samples } \mathbf{z}_1, \dots, \mathbf{z}_S \sim q_{\theta}(\mathbf{z} \mid \mathbf{x}^{(i)})
$$

Reparameterization Trick

 Objective: minimize the negative log-likelihood of the dataset plus a *regularization term* that encourages a dense latent space $J(\theta, \phi) = \sum$ $i=1$ \boldsymbol{N} $\ell_i(\bm{\theta},\bm{\phi})$ $\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) \approx -\left| \begin{array}{c} \end{array} \right\rangle$ $s=1$ \mathcal{S}_{0} $\log p_{\boldsymbol{\phi}}\big(\pmb{x}^{(i)}\big|\pmb{z}_s(\boldsymbol{\theta})\big)\big| + KL\big(\textit{q}_{\boldsymbol{\theta}}\big(\pmb{z}\big|\pmb{x}^{(i)}\big)\parallel p(\pmb{z})\big)$

 $\mathcal{L}^{(16/24)}$ **58 58 59 50 59 50 50 50 50 50 50 50 5** for $\bm{z}_\mathcal{S}(\bm{\theta}) = \mu_{\bm{\theta}}\big(\bm{x}^{(i)}\big) + \bm{\sigma}_{\bm{\theta}}\big(\bm{x}^{(i)}\big) \odot \bm{\epsilon}_{\mathcal{S}}$ where $\bm{\epsilon}_{\bm{s}} \thicksim N(\bm{0}, I)$

Reparameterization Trick

 Objective: minimize the negative log-likelihood of the dataset plus a *regularization term* that encourages a dense latent space $J(\theta, \phi) = \sum$ $i=1$ \boldsymbol{N} $\ell_i(\bm{\theta},\bm{\phi})$ $\ell_i(\boldsymbol{\theta}, \boldsymbol{\phi}) \approx -\left| \begin{array}{c} \end{array} \right\rangle$ $s=1$ \mathcal{S}_{0} $\log p_{\boldsymbol{\phi}}\big(\pmb{x}^{(i)}\big|\pmb{z}_s(\boldsymbol{\theta})\big)\big| + KL\big(\textit{q}_{\boldsymbol{\theta}}\big(\pmb{z}\big|\pmb{x}^{(i)}\big)\parallel p(\pmb{z})\big)$

9/16/24 **59** for $\bm{z}_\mathcal{S}(\bm{\theta}) = \mu_{\bm{\theta}}\big(\bm{x}^{(i)}\big) + \bm{\sigma}_{\bm{\theta}}\big(\bm{x}^{(i)}\big) \odot \bm{\epsilon}_{\mathcal{S}}$ where $\bm{\epsilon}_{\bm{s}} \thicksim N(\bm{0}, I)$

$$
\ell_i(\theta, \phi) = -\mathbb{E}_{q_{\theta}(z|x^{(i)})}[\log p_{\phi}(x^{(i)}|z)] + KL(q_{\theta}(z|x^{(i)}) \parallel p(z))
$$
\n
$$
\approx -\left(\sum_{s=1}^S \log p_{\phi}(x^{(i)}|z_s(\theta))\right) + KL(q_{\theta}(z|x^{(i)}) \parallel p(z))
$$
\n
$$
\approx -\left(\sum_{s=1}^S \mathcal{N}(x^{(i)}) \frac{p_{\phi}(z^{(i)}|z_{s}(\theta))}{p_{\phi}(z^{(i)})} \frac{p_{\phi}(z^{(i)}|z_{s}(\theta))}{p_{\phi}(z^{(i)})} \right)
$$
\n
$$
\approx + KL(\mathcal{N}(\psi_{\theta}(x^{(i)}), \sigma_{\theta}^{2}(x^{(i)}) \parallel \mathcal{N}(0, \mathcal{I}))
$$
\n
$$
\text{where } \epsilon \leq \mathcal{N}(\mathcal{N}(\theta) \setminus \sigma_{\theta}^{2}(x^{(i)}) \parallel \mathcal{N}(0, \mathcal{I}))
$$

Variational Autoencoder: Objective Function

Variational Autoencoder: Latent Space Visualization

066666666660000000000 02 Ð \mathbf{C} O \mathcal{O} o 2 q O Ð D I I в 6 n n 33 9 5 Б В 5533 q 5 5 5 q 3 5 5 5537 \prec 3 3 я 882 q \prec \prec Я λ 89 q 89 89 89 5 5 5 5 9 q 9 99 777

Variational Autoencoder: Generated Samples…

 993898

Three Types of Graphical **Models**

Directed Graphical Model

X1 X1 X1

X1 X1

Undirected Graphical Model Factor Graph

Directed Graphical Models a.k.a. Bayesian **Networks**

 $P(X_1, \ldots, X_5)$ \mathbb{R}^2 1 , 2 , 3 , 4 , 5 ∗ 2 | 1 $I = D(X) \cdot D(X)$ − r''' r' r' c ' $\sqrt{x^2-x^2}$ $-p(X_5|X_3)$

Directed Graphical Models a.k.a. Bayesian **Networks**

$$
P(X_1, ..., X_D) = \prod_{d=1}^{D} P(X_d | \text{parents}(X_d))
$$

A Bayesian Network consists of:

- a graph G (the *qualitative specification*), which can be
	- specified using prior knowledge / domain expertise
	- learned from the training data (model selection)
- conditional probabilities (the *quantitative specification*)
	- these will depend on the relative types of the variables