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Reminders

• Homework 1: Generative Models of Text
– Out: Mon, Sep 9
– Due: Mon, Sep 23 at 11:59pm

2



DIRECTED GRAPHICAL MODEL
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Three Types of Graphical Models
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Directed Graphical Model

Example Definition
• A directed graphical model (aka. Bayesian 

network) is a directed acyclic graph that 
represents the conditional independencies of a 
set of variables X1,…,XT

• Each node is variable Xt and each edge implies a 
directional influence between a pair of variables

• The DGM factorizes the joint distribution over 
the variables as a product of conditional 
probabilities:
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X1

X3X2

X4 X5

P (X1, X2, X3, X4, X5) =

P (X5 | X3)P (X4 | X2, X3)

P (X3)P (X2 | X1)P (X1)
P (X1, . . . , XT ) =

T∏

t=1

P (Xt | parents(Xt))



Directed Graphical Model

Example
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X1

X3X2

X4 X5

the graph (qualitative specification) could be:
- specified using domain expertise about causal relationships
-  learned from data
- chosen because of nice computational properties

the conditional probabilities (quantitative specification) is:
- depends on the types of variables involved
- typically learned from data

P (X1, X2, X3, X4, X5) =

P (X5 | X3)P (X4 | X2, X3)

P (X3)P (X2 | X1)P (X1)



a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification
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Example: Conditional probability tables (CPTs)
for discrete random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C
P(

D|
 C

)

Quantitative Specification
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Example: Conditional probability density functions (CPDs)
for continuous random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification
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Example: Combination of CPTs and CPDs 
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67



Example:

Observed Variables

• In a graphical model, shaded nodes are “observed”, i.e. their 
values are given

10

X1

X3X2

X4 X5



MARKOV MODEL
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Markov Model
1. 1st-order Markov assumption: 

for a sequence of random 
variables, the probability 
distribution over xt random 
variables is conditionally 
independent of x1 ,…, xt-2 
given xt-1 

2. 1st-order Markov model: 
defines a joint distribution 
over a sequence of variables 
using a Markov assumption

3. We can represent the Markov 
model as a directed graphical 
model
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p(x1, . . . , xT ) = p(x1)

T∏

t=2

p(xt | xt−1)

p(xt | x1, . . . , xt−1) = p(xt | xt−1)

x1 x2 x3 . . . xT−1 xT



In-class Exercise: RNN as a DGM
Given a five-word sequence, 𝑤!, 𝑤", 𝑤#, 𝑤$, 𝑤% , how could 

we represent the implied probability distributions of an 
RNN as a directed graphical model? 
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𝑤! 𝑤"𝑤#𝑤$ 𝑤%

9/16/24



Locally Normalized     vs.

32

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical 
Model

Undirected Graphical 
Model Factor Graph

P (X1, . . . , XT ) =
T∏

t=1

P (Xt | parents(Xt))

Globally Normalized



UNSUPERVISED LEARNING
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Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

p*(x0)
2. we choose a distribution pθ(x0) for which 

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)
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Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

p*(x0)
2. we choose a distribution pθ(x0) for which 

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

Example: autoregressive LMs
• true p*(x0) is the (human) process that 

produced text on the web
• choose pθ(x0) to be an autoregressive 

language model
– autoregressive structure means that 

p(xt | x1, …, xt-1) ~ Categorical(.) and 
ancestral sampling is exact/efficient

• learn by finding 
  θ ≈ argmaxθ log(pθ(x0))
using gradient based updates on 
  ∇θ log(pθ(x0))
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Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

p*(x0)
2. we choose a distribution pθ(x0) for which 

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

Example: GANs
• true p*(x0) is distribution over photos taken 

and posted to Flikr
• choose pθ(x0) to be an expressive model 

(e.g. noise fed into inverted CNN) that can 
generate images
– sampling is typically easy:

z ~ N(0, I)  and x0 = fθ(z) 
• learn by finding θ ≈ argmaxθ log(pθ(x0))?

– No! Because we can’t even compute 
log(pθ(x0)) or its gradient

– Why not? Because the integral is 
intractable even for a simple 1-hidden 
layer neural network with nonlinear 
activation

 
36p(x0) =

∫
z
p(x0 | z)p(z)dz

so optimize a minimax loss instead



Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

p*(x0)
2. we choose a distribution pθ(x0) for which 

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

Example: VAEs / Diffusion Models
• true p*(x0) is distribution over photos taken 

and posted to Flikr
• choose pθ(x0) to be an expressive model 

(e.g. noise fed into inverted CNN) that can 
generate images
– sampling is will be easy

• learn by finding θ ≈ argmaxθ log(pθ(x0))?
– Sort of! We can’t compute the gradient  
∇θ log(pθ(x0))

– So we instead optimize a variational 
lower bound (more on that later)

 

 37
Figure from Ho et al. (2020) 



Latent Variable Models
• For GANs and VAEs, 

we assume that there 
are (unknown) latent 
variables which give 
rise to our 
observations

• The vector z are those 
latent variables

• After learning a GAN 
or VAE, we can 
interpolate between 
images in latent z 
space

38
Figure from Radford et al. (2016)



From VAEs to Diffusion Models

• Next we will consider (1) diffusion models and (2) 
variational autoencoders (VAEs)

• The steps in defining these models is roughly:
– Define a probability distribution involving Gaussian noise
– Use a variational lower bound as an objective function
– Learn the parameters of the probability distribution by optimizing 

the objective function

• So what is a variational lower bound?
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HIGH-LEVEL INTRO TO VARIATIONAL 
INFERENCE
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Variational 
Autoencoder: 
Network 
Perspective

9/16/24 41

� Objective: minimize the negative log-likelihood of the dataset 

plus a regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
&'!

(

ℓ& 𝜽,𝝓

ℓ& 𝜽,𝝓 = −𝔼)𝜽 𝒛∣𝒙 " log 𝑝𝝓 𝒙 & 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 & ∥ 𝑝 𝒛



Variational 
Autoencoder: 
Network 
Perspective

9/16/24 42

� Objective: minimize the negative log-likelihood of the dataset 

plus a regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
&'!

(

ℓ& 𝜽,𝝓

ℓ& 𝜽,𝝓 = −𝔼)𝜽 𝒛∣𝒙 " log 𝑝𝝓 𝒙 & 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 & ∥ 𝑝 𝒛

Where on earth did 
this objective 

function come 
from?



Variational Inference
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A Common Problem:
– Suppose we have an interesting distribution p(x, z) 

and we wish to work with its posterior p(z | x) 
– For training data x and latent variables z, estimating 

the posterior p(z | x) is usually intractable!

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html
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Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

https://www.cs.jhu.edu/~jason/tutorials/variational.html


Variational Inference
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A Common Problem:
– Suppose we have an interesting distribution p(x, z) and we wish 

to work with its posterior p(z | x) or the marginal p(x)
– For training data x and latent variables z, estimating the posterior 

p(z | x) or the marginal p(x) is usually intractable!

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

Question: Why is p(x) often intractable to compute?
Answer:

we assume 
p(x) is 

intractable

p(z | x) =
p(x, z)
p(x)

https://www.cs.jhu.edu/~jason/tutorials/variational.html


Solution:
– Approximate p(z | x) with a simpler q(z | x)
– Typically q(z | x) has more independence 

assumptions than p(z | x), which is fine b/c q(z | x) is 
tuned for a specific x

– Key idea: pick a single q(z | x) from some family Q 
that best approximates p(z | x) 

Variational Inference
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A Common Problem:
– Suppose we have an interesting distribution p(x, z) 

and we wish to work with its posterior p(z | x) 
– For training data x and latent variables z, estimating 

the posterior p(z | x) is usually intractable!

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html


Variational Inference

46

Terminology:
– q(z | x): the variational approximation
– Q: the variational family
– Usually qθ(z | x) is parameterized by some θ called 

variational parameters 
– Usually pα(z | x) is parameterized by some fixed α – 

we’ll call them the parameters 

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

Example Algorithms:
– mean-field variational inference
– loopy belief propagation
– tree-reweighted belief propagation
– expectation propagation

https://www.cs.jhu.edu/~jason/tutorials/variational.html


Variational Inference
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• Question: Do we learn a single distribution qθ (z | x) 
for all x’s? 

• Answer: Not necessarily, it’s quite common to infer a 
separate qθ for each x!
– Consider the sampling equivalent of this:

• you could draw samples z(i)～p(z | x’) 
• then train some simple qθ(z | x’) on z(1), z(2) ,…, z(N) 

• hope that the sample adequately represents the posterior for 
the given x’ 

– How is VI different from this?
• VI doesn’t require sampling
• VI is fast and deterministic
• Why? b/c we choose an objective function (KL divergence) that 

defines which qθ best approximates pα, and exploit the special 
structure of qθ to optimize it

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html


Variational Inference
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V.I. offers a new design decision
– Choose the distribution pα(z | x) that you really 

want, i.e. don’t just simpify it to make it 
computationally convenient

– Then design a the structure of another distribution 
qθ(z | x) such that V.I. is efficient

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html


THE MEAN FIELD APPROXIMATION

49



Mean Field Approximation
The mean field approximation assumes our variational 
approximation qθ(z) treats each variable as independent

50
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Ising Model

Mean Field Approximation
The mean field approximation assumes our variational 
approximation qθ(z) treats each variable as independent

51
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Mean Field Approximation
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Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Dirichlet

Document-specific 
topic distribution

Topic assignment

Observed word

Topic Dirichlet

Approximate with q 

Latent Dirichlet Allocation (LDA)
• Uncollapsed Variational Inference, aka. Explicit V.I.

(original distribution)



Mean Field Approximation
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Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Document-specific 
topic distribution

Topic assignment

Topic

Latent Dirichlet Allocation (LDA)
• Uncollapsed Variational Inference, aka. Explicit V.I.

(mean field variational approximation)



MEAN FIELD VARIATIONAL INFERENCE
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KL Divergence
• Definition: for two distributions q(x) and p(x) over x ∈ 𝒳, the KL 

Divergence is: 

• Properties:
– KL(q || p) measures the proximity of two distributions q and p
– KL is not symmetric: KL(q || p) ≠ KL(p || q) 
– KL is minimized when q(x) = p(x) for all x ∈ 𝒳
– KL(q || p) ≥ 0 

62

KL(q||p) = Eq(x)

[

log
q(x)

p(x)

]

=

{

∑

x
q(x) log q(x)

p(x)
∫

x
q(x) log q(x)

p(x)dx

Recall…



Mean Field V.I. Overview
1. Goal: estimate pα(z | x) 

we assume this is intractable to compute exactly
2. Idea: approximate with another distribution qθ(z | x) ≈ pα(z | x) for each x 
3. Mean Field: assume qθ(z | x) = ∏t qt(zt | x; θ)

i.e., we decompose over variables
other choices for the decomposition of qθ(z) give rise to “structured mean field”

4. Optimization Problem: pick the q that minimizes KL(q || p)

5. Optimization Algorithm: various options
– e.g. coordinate descent repeatedly picks the best qt(zt | x) based on the 

other { qs(zs | x) }s≠t being fixed
– e.g. gradient descent optimizes a surrogate objective ELBO(qθ) to find θ

63

equivalent

Z1

q1

Z1

q1

ZT

qT

…

q̂(z | x) = argmin
q(z|x)∈Q

KL(q(z | x) ∥ p(z | x))

θ̂ = argmin
θ∈Θ

KL(qθ(z | x) ∥ pα(z | x))



KL(q(z | x) ∥ p(z | x)) = Eq(z|x)

[

log
(

q(z | x)
p(z | x)

)]

= Eq(z|x) [log q(z | x)]− Eq(z|x) [log p(z | x)]
= Eq(z|x) [log q(z | x)]− Eq(z|x) [log p(x, z)] + Eq(z|x) [log p(x)]
= Eq(z|x) [log q(z | x)]− Eq(z|x) [log p(x, z)] + log p(x)

Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #1: Oh no! We can’t even compute this KL. 
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we assumed this 
is intractable to 

compute!

Why we can’t compute KL…

this 
expectation 

does not 
depend on q

θ̂ = argmin
θ∈Θ

KL(qθ(z | x) ∥ pα(z | x))



θ = argmin
θ

KL(qθ(z | x) ∥ pα(z | x))

= argmin
θ

Eqθ(z|x) [log qθ(z | x)]− Eqθ(z|x) [log pα(x, z)] + log pα(x)

= argmin
θ

Eqθ(z|x) [log qθ(z | x)]− Eqθ(z|x) [log pα(x, z)]

= argmax
θ

ELBO(qθ)

Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #2: We don’t need to compute this KL
We can instead maximize the ELBO (i.e. Evidence Lower BOund)
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Here is why…

dropping the 
intractable term 
gives the ELBO

The ELBO for a DGM

θ̂ = argmin
θ∈Θ

KL(qθ(z | x) ∥ pα(z | x))

ELBO(qθ) = Eqθ(z|x) [log pα(x, z)]− Eqθ(z|x) [log qθ(z | x)]



ELBO as Objective Function

What does maximizing ELBO(qθ) accomplish?
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1. The first expectation is 
high if qθ puts probability 
mass on the same values 
of z that pα puts 
probability mass

2. The second term is the 
entropy of qθ and the 
entropy will be high if qθ 
spreads its probability 
mass evenly

ELBO(qθ) = Eqθ(z|x) [log pα(x, z)]− Eqθ(z|x) [log qθ(z | x)]



ELBO as lower bound

Takeaways: 
1. in variational inference, we find 

the q that gives the tightest 
bound on the normalization 
constant for p(z | x)

2. maximizing the ELBO is 
equivalent to minimizing KL

3. maximizing the ELBO is 
maximizing a lower bound on the 
likelihood p(x)
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Theorem: For any q, log p(x) ≥ ELBO(q)
i.e. ELBO(q) is a lower bound for log p(x)

ELBO(qθ) = Eqθ(z|x) [log pα(x, z)]− Eqθ(z|x) [log qθ(z | x)]
KL(q(z | x) ∥ p(z | x)) = Eq(z|x) [log q(z | x)]− Eq(z|x) [log p(x, z)] + Eq(z|x) [log p(x)]

Note:

Proof #1:

1.

2.

3.
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ELBO’s relation to log p(x)
Theorem:

Proof #2:



VARIATIONAL AUTOENCODERS
(Through the Lens of Variational Inference)
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Why VAEs?

• Autoencoders:
– learn a low dimensional representation of the input, but hard to 

work with as a generative model
– one of the key limitations of autoencoders is that we have no way 

of sampling from them!

• Variational autoencoders (VAEs)
– by contrast learn a continuous latent space that is easy to sample 

from!
– can generate new data (e.g. images) by sampling from the learned 

generative model
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Variational Autoencoders
The Something-like-a-VAE Model
• Consider a model p(x, z) = p(x | z) p(z)

– where p(z) is a N(0, I)
– where x = gɸ(z/10 + z/||z||) 

i.e. we don’t use parameters ɸ
• Trivially, we can draw samples of z and directly convert 

them to values x
The VAE Model
• The directed graphical model for VAE is the same as 

for the silly model above, and it’s quite simple
(ignoring the neural net details that give rise to x)

• Key idea of VAE: define gɸ(z) as a neural net and learn 
ɸ from data

71
Figure from Doersch (2016)

ɸz

x

N

pɸ(x, z) 

z ~ Gaussian(0, I)



Variational Autoencoders
Neural Network Perspective
• We can view a variational autoencoder (VAE) 

as an autoencoder consisting of two neural 
networks

• VAEs (as encoders) define two distributions:
– encoder: qθ(z | x)
– decoder: pɸ(x | z) 

• Parameters θ and ɸ are neural network 
parameters (i.e. θ are not the variational 
parameters)
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ɸz

x

N

pɸ(x | z) 

qθ(z | x)
θ

z

x

N



Graphical Model Perspective
• We can also view the VAE from 

the perspective of variational 
inference

• In this case we have two 
distributions:
– model: pɸ(x, z) = pɸ(z | x) p(z)
– variational approximation: 

qλ=f(x; θ)(z | x)
• We have the same model 

parameters ɸ
• The variational parameters λ are 

a function of  NN parameters θ

Variational Autoencoders
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z ~ Gaussian(0, I)

λ = f(x; θ)
λ

z

x

N

ɸz

x

N

pɸ(x, z) 

qλ(z | x)



VAEs: 
Neural 

Network 
View
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Variational 
Autoencoder: 
Network 
Perspective

9/16/24 75

� Objective: minimize the negative log-likelihood of the dataset 

plus a regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
!"#

$

ℓ! 𝜽,𝝓

ℓ! 𝜽,𝝓 = −𝔼%𝜽 𝒛∣𝒙 " log 𝑝𝝓 𝒙 ! 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 ! ∥ 𝑝 𝒛



Variational 
Autoencoder: 
Network 
Perspective
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� Objective: minimize the negative log-likelihood of the dataset 

plus a regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
!"#

$

ℓ! 𝜽,𝝓

ℓ! 𝜽,𝝓 = −𝔼%𝜽 𝒛∣𝒙 " log 𝑝𝝓 𝒙 ! 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 ! ∥ 𝑝 𝒛

Where on earth did 
this objective 

function come 
from?



VAE Objective Function
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bjective: minimize the negative log-likelihood of the dataset plus a 

regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
!"#

$

ℓ! 𝜽,𝝓

ℓ! 𝜽,𝝓 = −𝔼%𝜽 𝒛∣𝒙 " log 𝑝𝝓 𝒙 ! 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 ! ∥ 𝑝 𝒛

ELBO(qθ) = Eqθ(z|x) [log pα(x, z)]− Eqθ(z|x) [log qθ(z | x)]



Reparameterizatio
n Trick
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� Objective: minimize the negative log-likelihood of the dataset 

plus a regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
!"#

$

ℓ! 𝜽,𝝓

ℓ! 𝜽,𝝓 ≈ − '
+"#

,

log 𝑝𝝓 𝒙 ! 𝒛+ 𝜽 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 ! ∥ 𝑝 𝒛

for 𝒛+ 𝜽 = 𝜇𝜽 𝒙 ! + 𝝈𝜽 𝒙 ! ⨀𝝐+ where 𝝐𝒔 ∼ 𝑁 𝟎, 𝐼  

𝜖

𝓏



VAE RESULTS
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VAEs for Image Generation
Kingma & Welling (2014)
• introduced VAEs
• applied to image generation
Model
• pɸ(z) ~ N(z; 0, I)
• pɸ(x | z) is a multivariate 

Gaussian with mean and 
variance computed by an 
MLP,  fully connected neural 
network with a single hidden 
layer with parameters ɸ

• qθ(z | x) is a multivariate 
Gaussian with diagonal 
covariance structure and with 
mean and variance computed 
by an MLP with parameters θ
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Figure from Kingma & Welling (2014)



VAEs for Image Generation

85
Figure from Kingma & Welling (2014)



VAEs for Image Generation
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Figure from Kingma & Welling (2014)



VAEs for Image Generation

87
Figure from Kingma & Welling (2014)



VAEs for Text Generation
Bowman et al. (2015)
• example of an application of 

VAEs to discrete data
• built on the sequence-to-

sequence framework:
– input is read in by an LSTM
– output is generated by an 

LSTM-LM

Model
• pɸ(z) ~ N(z; 0, I)
• pɸ(x | z) is an LSTM Language 

Model with parameters ɸ
• qθ(z | x) is a multivariate 

Gaussian with mean and 
variance computed by an 
LSTM with parameters θ

88
Figure from Bowman et al. (2015)



VAEs for Text Generation

89
Figure from Bowman et al. (2015)



VQ-VAE
• Vector Quantized VAE (VQ-VAE) learns a continuous 

codebook, but the encoder outputs discrete codes
• Decoder takes a code and generates a sample 

conditioned on it

91
Figure from van den Oord et al. (2018)



VQ-VAE
• Vector Quantized VAE (VQ-VAE) learns a continuous 

codebook, but the encoder outputs discrete codes
• Decoder takes a code and generates a sample 

conditioned on it

92
Figure from van den Oord et al. (2018)

https://avdnoord.github.io/homepage/vqvae

Example: Generating Audio

https://avdnoord.github.io/homepage/vqvae


VQ-VAE

93
Figure from Razavi et al. (2019)

• VQ-VAE-2 
extended the 
original idea 
by learning 
two levels 
(bottom and 
top) and a 
strong prior 
over the latent 
space

• Samples from 
this new 
model can be 
convincing 
even at high-
fidelity



VQ-VAE
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Figure from Razavi et al. (2019)
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VQ-VAE
• VQ-VAE-2 

extended the 
original idea 
by learning 
two levels 
(bottom and 
top) and a 
strong prior 
over the latent 
space

• Samples from 
this new 
model can be 
convincing 
even at high-
fidelity
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VQ-VAE
• VQ-VAE-2 

extended the 
original idea 
by learning 
two levels 
(bottom and 
top) and a 
strong prior 
over the latent 
space

• Samples from 
this new 
model can be 
convincing 
even at high-
fidelity
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VQ-VAE
• VQ-VAE-2 

extended the 
original idea 
by learning 
two levels 
(bottom and 
top) and a 
strong prior 
over the latent 
space

• Samples from 
this new 
model can be 
convincing 
even at high-
fidelity
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Figure from Razavi et al. 
(2019)


