
Variational Inference
 +

Variational Autoencoders (VAEs)

1

10-423/10-623 Generative AI

Matt Gormley & Henry Chai
Lecture 7

Sep. 18, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 1: Generative Models of Text
– Out: Mon, Sep 9
– Due: Mon, Sep 23 at 11:59pm

2

DIRECTED GRAPHICAL MODEL

3

Three Types of Graphical Models

4

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical
Model

Undirected Graphical
Model Factor Graph

Directed Graphical Model

Example Definition
• A directed graphical model (aka. Bayesian

network) is a directed acyclic graph that
represents the conditional independencies of a
set of variables X1,…,XT

• Each node is variable Xt and each edge implies a
directional influence between a pair of variables

• The DGM factorizes the joint distribution over
the variables as a product of conditional
probabilities:

5

X1

X3X2

X4 X5

P (X1, X2, X3, X4, X5) =

P (X5 | X3)P (X4 | X2, X3)

P (X3)P (X2 | X1)P (X1)
P (X1, . . . , XT) =

T∏

t=1

P (Xt | parents(Xt))

Directed Graphical Model

Example

6

X1

X3X2

X4 X5

the graph (qualitative specification) could be:
- specified using domain expertise about causal relationships
- learned from data
- chosen because of nice computational properties

the conditional probabilities (quantitative specification) is:
- depends on the types of variables involved
- typically learned from data

P (X1, X2, X3, X4, X5) =

P (X5 | X3)P (X4 | X2, X3)

P (X3)P (X2 | X1)P (X1)

a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification

7© Eric Xing @ CMU, 2006-2011

Example: Conditional probability tables (CPTs)
for discrete random variables

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C
P(

D|
 C

)

Quantitative Specification

8© Eric Xing @ CMU, 2006-2011

Example: Conditional probability density functions (CPDs)
for continuous random variables

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification

9© Eric Xing @ CMU, 2006-2011

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67

Example:

Observed Variables

• In a graphical model, shaded nodes are “observed”, i.e. their
values are given

10

X1

X3X2

X4 X5

MARKOV MODEL

11

Markov Model
1. 1st-order Markov assumption:

for a sequence of random
variables, the probability
distribution over xt random
variables is conditionally
independent of x1 ,…, xt-2
given xt-1

2. 1st-order Markov model:
defines a joint distribution
over a sequence of variables
using a Markov assumption

3. We can represent the Markov
model as a directed graphical
model

12

p(x1, . . . , xT) = p(x1)

T∏

t=2

p(xt | xt−1)

p(xt | x1, . . . , xt−1) = p(xt | xt−1)

x1 x2 x3 . . . xT−1 xT

In-class Exercise: RNN as a DGM
Given a five-word sequence, 𝑤!, 𝑤", 𝑤#, 𝑤$, 𝑤% , how could

we represent the implied probability distributions of an
RNN as a directed graphical model?

13

𝑤! 𝑤"𝑤#𝑤$ 𝑤%

9/16/24

Locally Normalized vs.

32

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical
Model

Undirected Graphical
Model Factor Graph

P (X1, . . . , XT) =
T∏

t=1

P (Xt | parents(Xt))

Globally Normalized

UNSUPERVISED LEARNING

33

Unsupervised Learning
Assumptions:
1. our data comes from some distribution

p*(x0)
2. we choose a distribution pθ(x0) for which

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

34

Unsupervised Learning
Assumptions:
1. our data comes from some distribution

p*(x0)
2. we choose a distribution pθ(x0) for which

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

Example: autoregressive LMs
• true p*(x0) is the (human) process that

produced text on the web
• choose pθ(x0) to be an autoregressive

language model
– autoregressive structure means that

p(xt | x1, …, xt-1) ~ Categorical(.) and
ancestral sampling is exact/efficient

• learn by finding
 θ ≈ argmaxθ log(pθ(x0))
using gradient based updates on
 ∇θ log(pθ(x0))

35

Unsupervised Learning
Assumptions:
1. our data comes from some distribution

p*(x0)
2. we choose a distribution pθ(x0) for which

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

Example: GANs
• true p*(x0) is distribution over photos taken

and posted to Flikr
• choose pθ(x0) to be an expressive model

(e.g. noise fed into inverted CNN) that can
generate images
– sampling is typically easy:

z ~ N(0, I) and x0 = fθ(z)
• learn by finding θ ≈ argmaxθ log(pθ(x0))?

– No! Because we can’t even compute
log(pθ(x0)) or its gradient

– Why not? Because the integral is
intractable even for a simple 1-hidden
layer neural network with nonlinear
activation

36p(x0) =

∫
z
p(x0 | z)p(z)dz

so optimize a minimax loss instead

Unsupervised Learning
Assumptions:
1. our data comes from some distribution

p*(x0)
2. we choose a distribution pθ(x0) for which

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

Example: VAEs / Diffusion Models
• true p*(x0) is distribution over photos taken

and posted to Flikr
• choose pθ(x0) to be an expressive model

(e.g. noise fed into inverted CNN) that can
generate images
– sampling is will be easy

• learn by finding θ ≈ argmaxθ log(pθ(x0))?
– Sort of! We can’t compute the gradient
∇θ log(pθ(x0))

– So we instead optimize a variational
lower bound (more on that later)

 37
Figure from Ho et al. (2020)

Latent Variable Models
• For GANs and VAEs,

we assume that there
are (unknown) latent
variables which give
rise to our
observations

• The vector z are those
latent variables

• After learning a GAN
or VAE, we can
interpolate between
images in latent z
space

38
Figure from Radford et al. (2016)

From VAEs to Diffusion Models

• Next we will consider (1) diffusion models and (2)
variational autoencoders (VAEs)

• The steps in defining these models is roughly:
– Define a probability distribution involving Gaussian noise
– Use a variational lower bound as an objective function
– Learn the parameters of the probability distribution by optimizing

the objective function

• So what is a variational lower bound?

39

HIGH-LEVEL INTRO TO VARIATIONAL
INFERENCE

40

Variational
Autoencoder:
Network
Perspective

9/16/24 41

� Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
&'!

(

ℓ& 𝜽,𝝓

ℓ& 𝜽,𝝓 = −𝔼)𝜽 𝒛∣𝒙 " log 𝑝𝝓 𝒙 & 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 & ∥ 𝑝 𝒛

Variational
Autoencoder:
Network
Perspective

9/16/24 42

� Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
&'!

(

ℓ& 𝜽,𝝓

ℓ& 𝜽,𝝓 = −𝔼)𝜽 𝒛∣𝒙 " log 𝑝𝝓 𝒙 & 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 & ∥ 𝑝 𝒛

Where on earth did
this objective

function come
from?

Variational Inference

43

A Common Problem:
– Suppose we have an interesting distribution p(x, z)

and we wish to work with its posterior p(z | x)
– For training data x and latent variables z, estimating

the posterior p(z | x) is usually intractable!

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

M

Nm K

xmn

zmn

⇤m

�

⌅k ⇥

Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

44

A Common Problem:
– Suppose we have an interesting distribution p(x, z) and we wish

to work with its posterior p(z | x) or the marginal p(x)
– For training data x and latent variables z, estimating the posterior

p(z | x) or the marginal p(x) is usually intractable!

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

Question: Why is p(x) often intractable to compute?
Answer:

we assume
p(x) is

intractable

p(z | x) =
p(x, z)
p(x)

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Solution:
– Approximate p(z | x) with a simpler q(z | x)
– Typically q(z | x) has more independence

assumptions than p(z | x), which is fine b/c q(z | x) is
tuned for a specific x

– Key idea: pick a single q(z | x) from some family Q
that best approximates p(z | x)

Variational Inference

45

A Common Problem:
– Suppose we have an interesting distribution p(x, z)

and we wish to work with its posterior p(z | x)
– For training data x and latent variables z, estimating

the posterior p(z | x) is usually intractable!

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

46

Terminology:
– q(z | x): the variational approximation
– Q: the variational family
– Usually qθ(z | x) is parameterized by some θ called

variational parameters
– Usually pα(z | x) is parameterized by some fixed α –

we’ll call them the parameters

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

Example Algorithms:
– mean-field variational inference
– loopy belief propagation
– tree-reweighted belief propagation
– expectation propagation

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

47

• Question: Do we learn a single distribution qθ (z | x)
for all x’s?

• Answer: Not necessarily, it’s quite common to infer a
separate qθ for each x!
– Consider the sampling equivalent of this:

• you could draw samples z(i)～p(z | x’)
• then train some simple qθ(z | x’) on z(1), z(2) ,…, z(N)

• hope that the sample adequately represents the posterior for
the given x’

– How is VI different from this?
• VI doesn’t require sampling
• VI is fast and deterministic
• Why? b/c we choose an objective function (KL divergence) that

defines which qθ best approximates pα, and exploit the special
structure of qθ to optimize it

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

48

V.I. offers a new design decision
– Choose the distribution pα(z | x) that you really

want, i.e. don’t just simpify it to make it
computationally convenient

– Then design a the structure of another distribution
qθ(z | x) such that V.I. is efficient

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html

THE MEAN FIELD APPROXIMATION

49

Mean Field Approximation
The mean field approximation assumes our variational
approximation qθ(z) treats each variable as independent

50

Z1

ψ1

ψ2

Z2

ψ3

ψ4

Z3

ψ5

ψ6
Z4

ψ7

ψ8

Z5

ψ9

Z6

ψ10

Z7

ψ12

ψ11

Z1

q1 Z2

q2

Z3

q3 Z4

q4

Z5

q5

Z6

q6

Z7

q7

Ising Model

Mean Field Approximation
The mean field approximation assumes our variational
approximation qθ(z) treats each variable as independent

51

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Mean Field Approximation

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

M

Nm K

xmn

zmn

⇤m

�

⌅k ⇥

Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Dirichlet

Document-specific
topic distribution

Topic assignment

Observed word

Topic Dirichlet

Approximate with q

Latent Dirichlet Allocation (LDA)
• Uncollapsed Variational Inference, aka. Explicit V.I.

(original distribution)

Mean Field Approximation

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

M

Nm K

xmn

zmn

⇤m

�

⌅k ⇥

Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Document-specific
topic distribution

Topic assignment

Topic

Latent Dirichlet Allocation (LDA)
• Uncollapsed Variational Inference, aka. Explicit V.I.

(mean field variational approximation)

MEAN FIELD VARIATIONAL INFERENCE

61

KL Divergence
• Definition: for two distributions q(x) and p(x) over x ∈ 𝒳, the KL

Divergence is:

• Properties:
– KL(q || p) measures the proximity of two distributions q and p
– KL is not symmetric: KL(q || p) ≠ KL(p || q)
– KL is minimized when q(x) = p(x) for all x ∈ 𝒳
– KL(q || p) ≥ 0

62

KL(q||p) = Eq(x)

[

log
q(x)

p(x)

]

=

{

∑

x
q(x) log q(x)

p(x)
∫

x
q(x) log q(x)

p(x)dx

Recall…

Mean Field V.I. Overview
1. Goal: estimate pα(z | x)

we assume this is intractable to compute exactly
2. Idea: approximate with another distribution qθ(z | x) ≈ pα(z | x) for each x
3. Mean Field: assume qθ(z | x) = ∏t qt(zt | x; θ)

i.e., we decompose over variables
other choices for the decomposition of qθ(z) give rise to “structured mean field”

4. Optimization Problem: pick the q that minimizes KL(q || p)

5. Optimization Algorithm: various options
– e.g. coordinate descent repeatedly picks the best qt(zt | x) based on the

other { qs(zs | x) }s≠t being fixed
– e.g. gradient descent optimizes a surrogate objective ELBO(qθ) to find θ

63

equivalent

Z1

q1

Z1

q1

ZT

qT

…

q̂(z | x) = argmin
q(z|x)∈Q

KL(q(z | x) ∥ p(z | x))

θ̂ = argmin
θ∈Θ

KL(qθ(z | x) ∥ pα(z | x))

KL(q(z | x) ∥ p(z | x)) = Eq(z|x)

[

log
(

q(z | x)
p(z | x)

)]

= Eq(z|x) [log q(z | x)]− Eq(z|x) [log p(z | x)]
= Eq(z|x) [log q(z | x)]− Eq(z|x) [log p(x, z)] + Eq(z|x) [log p(x)]
= Eq(z|x) [log q(z | x)]− Eq(z|x) [log p(x, z)] + log p(x)

Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #1: Oh no! We can’t even compute this KL.

64

we assumed this
is intractable to

compute!

Why we can’t compute KL…

this
expectation

does not
depend on q

θ̂ = argmin
θ∈Θ

KL(qθ(z | x) ∥ pα(z | x))

θ = argmin
θ

KL(qθ(z | x) ∥ pα(z | x))

= argmin
θ

Eqθ(z|x) [log qθ(z | x)]− Eqθ(z|x) [log pα(x, z)] + log pα(x)

= argmin
θ

Eqθ(z|x) [log qθ(z | x)]− Eqθ(z|x) [log pα(x, z)]

= argmax
θ

ELBO(qθ)

Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #2: We don’t need to compute this KL
We can instead maximize the ELBO (i.e. Evidence Lower BOund)

65

Here is why…

dropping the
intractable term
gives the ELBO

The ELBO for a DGM

θ̂ = argmin
θ∈Θ

KL(qθ(z | x) ∥ pα(z | x))

ELBO(qθ) = Eqθ(z|x) [log pα(x, z)]− Eqθ(z|x) [log qθ(z | x)]

ELBO as Objective Function

What does maximizing ELBO(qθ) accomplish?

66

1. The first expectation is
high if qθ puts probability
mass on the same values
of z that pα puts
probability mass

2. The second term is the
entropy of qθ and the
entropy will be high if qθ
spreads its probability
mass evenly

ELBO(qθ) = Eqθ(z|x) [log pα(x, z)]− Eqθ(z|x) [log qθ(z | x)]

ELBO as lower bound

Takeaways:
1. in variational inference, we find

the q that gives the tightest
bound on the normalization
constant for p(z | x)

2. maximizing the ELBO is
equivalent to minimizing KL

3. maximizing the ELBO is
maximizing a lower bound on the
likelihood p(x)

67

Theorem: For any q, log p(x) ≥ ELBO(q)
i.e. ELBO(q) is a lower bound for log p(x)

ELBO(qθ) = Eqθ(z|x) [log pα(x, z)]− Eqθ(z|x) [log qθ(z | x)]
KL(q(z | x) ∥ p(z | x)) = Eq(z|x) [log q(z | x)]− Eq(z|x) [log p(x, z)] + Eq(z|x) [log p(x)]

Note:

Proof #1:

1.

2.

3.

68

ELBO’s relation to log p(x)
Theorem:

Proof #2:

VARIATIONAL AUTOENCODERS
(Through the Lens of Variational Inference)

69

Why VAEs?

• Autoencoders:
– learn a low dimensional representation of the input, but hard to

work with as a generative model
– one of the key limitations of autoencoders is that we have no way

of sampling from them!

• Variational autoencoders (VAEs)
– by contrast learn a continuous latent space that is easy to sample

from!
– can generate new data (e.g. images) by sampling from the learned

generative model

70

Variational Autoencoders
The Something-like-a-VAE Model
• Consider a model p(x, z) = p(x | z) p(z)

– where p(z) is a N(0, I)
– where x = gɸ(z/10 + z/||z||)

i.e. we don’t use parameters ɸ
• Trivially, we can draw samples of z and directly convert

them to values x
The VAE Model
• The directed graphical model for VAE is the same as

for the silly model above, and it’s quite simple
(ignoring the neural net details that give rise to x)

• Key idea of VAE: define gɸ(z) as a neural net and learn
ɸ from data

71
Figure from Doersch (2016)

ɸz

x

N

pɸ(x, z)

z ~ Gaussian(0, I)

Variational Autoencoders
Neural Network Perspective
• We can view a variational autoencoder (VAE)

as an autoencoder consisting of two neural
networks

• VAEs (as encoders) define two distributions:
– encoder: qθ(z | x)
– decoder: pɸ(x | z)

• Parameters θ and ɸ are neural network
parameters (i.e. θ are not the variational
parameters)

72

ɸz

x

N

pɸ(x | z)

qθ(z | x)
θ

z

x

N

Graphical Model Perspective
• We can also view the VAE from

the perspective of variational
inference

• In this case we have two
distributions:
– model: pɸ(x, z) = pɸ(z | x) p(z)
– variational approximation:

qλ=f(x; θ)(z | x)
• We have the same model

parameters ɸ
• The variational parameters λ are

a function of NN parameters θ

Variational Autoencoders

73

z ~ Gaussian(0, I)

λ = f(x; θ)
λ

z

x

N

ɸz

x

N

pɸ(x, z)

qλ(z | x)

VAEs:
Neural

Network
View

74

Variational
Autoencoder:
Network
Perspective

9/16/24 75

� Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
!"#

$

ℓ! 𝜽,𝝓

ℓ! 𝜽,𝝓 = −𝔼%𝜽 𝒛∣𝒙 " log 𝑝𝝓 𝒙 ! 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 ! ∥ 𝑝 𝒛

Variational
Autoencoder:
Network
Perspective

9/16/24 76

� Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
!"#

$

ℓ! 𝜽,𝝓

ℓ! 𝜽,𝝓 = −𝔼%𝜽 𝒛∣𝒙 " log 𝑝𝝓 𝒙 ! 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 ! ∥ 𝑝 𝒛

Where on earth did
this objective

function come
from?

VAE Objective Function

9/16/24 77

bjective: minimize the negative log-likelihood of the dataset plus a

regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
!"#

$

ℓ! 𝜽,𝝓

ℓ! 𝜽,𝝓 = −𝔼%𝜽 𝒛∣𝒙 " log 𝑝𝝓 𝒙 ! 𝒛 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 ! ∥ 𝑝 𝒛

ELBO(qθ) = Eqθ(z|x) [log pα(x, z)]− Eqθ(z|x) [log qθ(z | x)]

Reparameterizatio
n Trick

9/16/24 78

� Objective: minimize the negative log-likelihood of the dataset

plus a regularization term that encourages a dense latent space

𝐽 𝜽,𝝓 ='
!"#

$

ℓ! 𝜽,𝝓

ℓ! 𝜽,𝝓 ≈ − '
+"#

,

log 𝑝𝝓 𝒙 ! 𝒛+ 𝜽 + 𝐾𝐿 𝑞𝜽 𝒛 𝒙 ! ∥ 𝑝 𝒛

for 𝒛+ 𝜽 = 𝜇𝜽 𝒙 ! + 𝝈𝜽 𝒙 ! ⨀𝝐+ where 𝝐𝒔 ∼ 𝑁 𝟎, 𝐼

𝜖

𝓏

VAE RESULTS

83

VAEs for Image Generation
Kingma & Welling (2014)
• introduced VAEs
• applied to image generation
Model
• pɸ(z) ~ N(z; 0, I)
• pɸ(x | z) is a multivariate

Gaussian with mean and
variance computed by an
MLP, fully connected neural
network with a single hidden
layer with parameters ɸ

• qθ(z | x) is a multivariate
Gaussian with diagonal
covariance structure and with
mean and variance computed
by an MLP with parameters θ

84
Figure from Kingma & Welling (2014)

VAEs for Image Generation

85
Figure from Kingma & Welling (2014)

VAEs for Image Generation

86
Figure from Kingma & Welling (2014)

VAEs for Image Generation

87
Figure from Kingma & Welling (2014)

VAEs for Text Generation
Bowman et al. (2015)
• example of an application of

VAEs to discrete data
• built on the sequence-to-

sequence framework:
– input is read in by an LSTM
– output is generated by an

LSTM-LM

Model
• pɸ(z) ~ N(z; 0, I)
• pɸ(x | z) is an LSTM Language

Model with parameters ɸ
• qθ(z | x) is a multivariate

Gaussian with mean and
variance computed by an
LSTM with parameters θ

88
Figure from Bowman et al. (2015)

VAEs for Text Generation

89
Figure from Bowman et al. (2015)

VQ-VAE
• Vector Quantized VAE (VQ-VAE) learns a continuous

codebook, but the encoder outputs discrete codes
• Decoder takes a code and generates a sample

conditioned on it

91
Figure from van den Oord et al. (2018)

VQ-VAE
• Vector Quantized VAE (VQ-VAE) learns a continuous

codebook, but the encoder outputs discrete codes
• Decoder takes a code and generates a sample

conditioned on it

92
Figure from van den Oord et al. (2018)

https://avdnoord.github.io/homepage/vqvae

Example: Generating Audio

https://avdnoord.github.io/homepage/vqvae

VQ-VAE

93
Figure from Razavi et al. (2019)

• VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

• Samples from
this new
model can be
convincing
even at high-
fidelity

VQ-VAE

94
Figure from Razavi et al. (2019)

• VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

• Samples from
this new
model can be
convincing
even at high-
fidelity

VQ-VAE
• VQ-VAE-2

extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

• Samples from
this new
model can be
convincing
even at high-
fidelity

95
Figure from Razavi et al.
(2019)

VQ-VAE
• VQ-VAE-2

extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

• Samples from
this new
model can be
convincing
even at high-
fidelity

96
Figure from Razavi et al.
(2019)

VQ-VAE
• VQ-VAE-2

extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

• Samples from
this new
model can be
convincing
even at high-
fidelity

97
Figure from Razavi et al.
(2019)

