

10-423/10-623 Generative AI

Machine Learning Department School of Computer Science Carnegie Mellon University

Diffusion Models

Matt Gormley & Henry Chai Lecture 8 Sep. 23, 2024

1

Reminders

- **Homework 1: Generative Models of Text**
	- **Out: Mon, Sep 9**
	- **Due: Mon, Sep 23 at 11:59pm**
- **Quiz 2:**
	- **In-class: Wed, Sep 25**
	- **Lectures 5-8**
- **Homework 2: Generative Models of Images**
	- **Out: Mon, Sep 23**
	- **Due: Mon, Oct 7 at 11:59pm**

UNSUPERVISED LEARNING

Assumptions:

- 1. our data comes from some distribution $p^*(x_0)$
- 2. we choose a distribution $p_{\theta}(\mathbf{x}_{0})$ for which sampling x_0 ~ $p_\theta(x_0)$ is tractable

Goal: learn θ s.t. $p_{\theta}(\mathbf{x}_{o}) \approx p^{*}(\mathbf{x}_{o})$

Assumptions:

- 1. our data comes from some distribution $p^*(x_0)$
- 2. we choose a distribution $p_{\theta}(\mathbf{x}_0)$ for which sampling $x_0 \sim p_\theta(x_0)$ is tractable

Goal: learn θ s.t. $p_{\theta}(\mathbf{x}_{o}) \approx p^{*}(\mathbf{x}_{o})$

Example: autoregressive LMs

- true $p^*(x_0)$ is the (human) process that produced text on the web
- choose $p_{\theta}(\mathbf{x}_0)$ to be an autoregressive language model
	- autoregressive structure means that $p(\mathbf{x}_{t} | \mathbf{x}_{1}, \ldots, \mathbf{x}_{t-1})$ ~ Categorical(.) and ancestral sampling is exact/efficient
- learn by finding $\theta \approx \argmax_{\theta} \log(p_{\theta}(\mathbf{x}_{o}))$ using gradient based updates on ∇_{θ} log(p_{θ}(**x**₀))

Assumptions:

- 1. our data comes from some distribution $p^*(x_0)$
- 2. we choose a distribution $p_{\theta}(\mathbf{x}_0)$ for which sampling $x_0 \sim p_\theta(\mathbf{x}_0)$ is tractable

Goal: learn θ s.t. $p_{\theta}(\mathbf{x}_{0}) \approx p^{*}(\mathbf{x}_{0})$

so optimize a minimax loss instead

Example: GANs

- true $p^*(x_0)$ is distribution over photos taken and posted to Flikr
- choose $p_{\theta}(\mathbf{x}_0)$ to be an expressive model (e.g. noise fed into inverted CNN) that can generate images
	- sampling is typically easy: $\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})$ and $\mathbf{x}_{0} = f_{\theta}(\mathbf{z})$
- learn by finding $\theta \approx \argmax_{\theta} log(p_{\theta}(\mathbf{x}_{0}))$?
	- No! Because we can't even compute $log(p_{\theta}(\mathbf{x}_{o}))$ or its gradient
	- Why not? Because the integral is intractable even for a simple 1-hidden layer neural network with nonlinear activation

$$
p(\mathbf{x}_0) = \int_{\mathbf{z}} p(\mathbf{x}_0 \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}
$$

Assumptions:

- 1. our data comes from some distribution $p^*(x_0)$
- 2. we choose a distribution $p_{\theta}(\mathbf{x}_0)$ for which sampling $x_0 \sim p_\theta(x_0)$ is tractable

Goal: learn θ s.t. $p_{\theta}(\mathbf{x}_{o}) \approx p^{*}(\mathbf{x}_{o})$

Example: VAEs / Diffusion Models

- true $p^*(x_0)$ is distribution over photos taken and posted to Flikr
- choose $p_{\theta}(\mathbf{x}_0)$ to be an expressive model (e.g. noise fed into inverted CNN) that can generate images
	- sampling is will be easy
- learn by finding $\theta \approx \argmax_{\theta} \log(p_{\theta}(\mathbf{x}_{0}))$?
	- Sort of! We can't compute the gradient ∇_{θ} log(p_{θ}(**x**₀))
	- So we instead optimize a variational lower bound (more on that later)

Latent Variable Models

- For GANs and VAEs, we assume that there are (unknown) **latent variables** which give rise to our observations
- The **vector z** are those latent variables
- After learning a GAN or VAE, we can **interpolate** between images in latent **z** space

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In the 6th row, you see a room without a window slowly transforming into a room with a giant window. In the 10th row, you see what appears to be a TV slowly being transformed into a window.

U -NET

Semantic Segmentation

- Given an image, predict a label for every pixel in the image
- Not merely a classification problem, because there are strong correlations between pixel-specific labels

Instance Segmentation

- Predict per-pixel labels as in semantic segmentation, but differentiate between different instances of the same label
- *Example*: if there are two people in the image, one person should be labeled **person-1** and one should be labeled **person-2**

Figure 1. The Mask R-CNN framework for instance segmentation.

Figure from https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

U -Net

Contracting path

- block consists of:
	- 3x3 convolution
	- 3x3 convolution
	- ReLU
	- max-pooling with stride of 2 (downsample)
- repeat the block N times, doubling number of channels

Expanding path

- block consists of:
	- 2x2 convolution (upsampling)
	- concatenation with contracting path features
	- 3x3 convolution
	- 3x3 convolution
	- ReLU
- repeat the block N times, halving the number of channels

U -Net

- Originally designed for applications to biomedical segmentation
- Key observation is that the output layer has the **same** dimensions as the input image (possibly with different number of channels)

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the "PhC-U373" data set. (b) Segmentation result (cyan mask) with manual ground truth (yellow border) (c) input image of the "DIC-HeLa" data set. (d) Segmentation result (random colored masks) with manual ground truth (yellow border).

DIFFUSION MODELS

- Next we will consider (1) diffusion md **variational autoencoders (VAEs)**
	- Although VAEs came first, we're going to models since they will receive more of of
- The steps in defining these models is
	- $-$ Define a probability distribution involvin
	- $-$ Use a variational lower bound as an obje
	- Learn the parameters of the probaby the objective function
- So what is a variational lower bound?

The standard presentation of diffusion models requires an understanding of variational inference. (we'll do that next time)

Today, we'll do an alternate presentation without variational inference!

 X_T X_{T-1} \cdots \cdots

Forward Process:

$$
q_{\phi}(\mathbf{x}_{0:T}) = q(\mathbf{x}_0) \prod_{t=1}^{T} q_{\phi}(\mathbf{x}_t | \mathbf{x}_{t-1})
$$

$$
q(\mathbf{x}_0) = \text{data distribution}
$$
\n
$$
q_{\phi}(\mathbf{x}_t \mid \mathbf{x}_{t-1}) \sim \mathcal{N}(\sqrt{\alpha_t} \mathbf{x}_{t-1}, (1 - \alpha_t) \mathbf{I})
$$
\n
$$
\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_{t-1} + \epsilon \sqrt{\log \sum_{t} \omega_{\text{tot}}} \in \mathcal{N}(\omega, \mathbf{Z})
$$

(Learned) Reverse Process:

$$
p_{\theta}(\mathbf{x}_{0:T}) = p_{\theta}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})
$$

$$
p_{\theta}(\mathbf{x}_{T}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

$$
p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}) \sim \mathcal{N}(\mu_{\theta}(\mathbf{x}_{t}, t), \Sigma_{\theta}(\mathbf{x}_{t}, t))
$$

Defining the Forward Process

Forward Process:

$$
q_{\phi}(\mathbf{x}_{0:T}) = q(\mathbf{x}_0) \prod_{t=1}^{T} q_{\phi}(\mathbf{x}_t | \mathbf{x}_{t-1})
$$

 $\sqrt{ }$

$$
q_{\phi}(\mathbf{x}_{t} \mid \mathbf{x}_{t-1})
$$
\n
$$
q_{\phi}(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}) \sim \mathcal{N}(\sqrt{\alpha_{t}} \mathbf{x}_{t-1}, (1 - \alpha_{t})\mathbf{I})
$$
\n
$$
\varphi = \sum \alpha_{t} \alpha_{t} \alpha_{t} \mathbf{x}_{t-1} \sim \mathcal{N}(\sqrt{\alpha_{t}} \mathbf{x}_{t-1}, (1 - \alpha_{t})\mathbf{I})
$$

Noise schedule:

We choose α_t to follow a fixed schedule s.t. $q_{\phi}(\mathbf{x}_T) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, just like $p_{\theta}(\mathbf{x}_T)$.

Gaussian (an aside)

Let $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$ and $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$

Gaussian (an aside)

Let $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$ and $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$

1. Sum of two Gaussians is a Gaussian

$$
X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)
$$

2. Diference of two Gaussians is a Gaussian

$$
X - Y \sim \mathcal{N}(\mu_x - \mu_y, \sigma_x^2 + \sigma_y^2)
$$

3. Gaussian with a Gaussian mean has a Gaussian Conditional

$$
Z \sim \mathcal{N}(\mu_z = X, \sigma_z^2) \Rightarrow P(Z \mid X) \sim \mathcal{N}(\cdot, \cdot)
$$

Defining the Forward Process

Forward Process:

$$
q_{\phi}(\mathbf{x}_{0:T}) = q(\mathbf{x}_0) \prod_{t=1}^{T} q_{\phi}(\mathbf{x}_t \mid \mathbf{x}_{t-1})
$$

 T

Noise schedule:

We choose α_t to follow a fixed schedule s.t. $q_{\phi}(\mathbf{x}_T) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, just like $p_{\theta}(\mathbf{x}_T)$.

 $q(\mathbf{x}_0) =$ data distribution $q_{\phi}(\mathbf{x}_t | \mathbf{x}_{t-1}) \sim \mathcal{N}(\sqrt{\alpha_t} \mathbf{x}_{t-1}, (1-\alpha_t) \mathbf{I})$

Property #1:

$$
q(\mathbf{x}_t | \mathbf{x}_0) \sim \mathcal{N}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})
$$

where $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s = \mathbf{q}_t \mathbf{q}_{\mathbf{z} \cdot \mathbf{z} \cdot \mathbf{z}} \mathbf{q}_t$

Q: So what is $q_{\phi}(\mathbf{x_T} | \mathbf{x}_0)$? Note the *capital* T in the subscript.

 $q_{\emptyset}(x_{\tau}|x_{o})\sim N(u\!\!\! v\!\!\! /o\!\!\! /)\in\mathbb{Z}\times\mathbb{T})$

27

A:

$$
\begin{aligned} \textbf{Forward Process:} \\ q_\phi(\mathbf{x}_{0:T}) = q(\mathbf{x}_0) \prod_{t=1}^T q_\phi(\mathbf{x}_t \mid \mathbf{x}_{t-1}) \end{aligned}
$$

(Learned) Reverse Process:

$$
p_{\theta}(\mathbf{x}_{0:T}) = p_{\theta}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})
$$

Q: If q_{ϕ} is just adding noise, how can p_θ be interesting at all?

A: Because \mathbf{A} : is not just a noise distribution and performance distribution and performance \mathbf{B}

Q: But if $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ is Gaussian, how can it learn a θ such that $p_{\theta}(\mathbf{x}_0) \approx q(\mathbf{x}_0)$? Won't $p_{\theta}(\mathbf{x}_0)$ be Gaussian too?

 $A:$ No. In fact, a diffusion model of sufficient \mathcal{A} , and \mathcal{A} is a diffusion model of sufficient \mathcal{A}

Gaussian (an aside)

Let $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$ and $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$

1. Sum of two Gaussians is a Gaussian

$$
X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)
$$

2. Diference of two Gaussians is a Gaussian

$$
X - Y \sim \mathcal{N}(\mu_x - \mu_y, \sigma_x^2 + \sigma_y^2)
$$

3. Gaussian with a Gaussian mean has a Gaussian Conditional

$$
Z \sim \mathcal{N}(\mu_z = X, \sigma_z^2) \Rightarrow P(Z \mid X) \sim \mathcal{N}(\cdot, \cdot)
$$

Gaussian (an aside)

Let $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$ and $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$

1. Sum of two Gaussians is a Gaussian

$$
X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)
$$

2. Diference of two Gaussians is a Gaussian

$$
X - Y \sim \mathcal{N}(\mu_x - \mu_y, \sigma_x^2 + \sigma_y^2)
$$

3. Gaussian with a Gaussian mean has a Gaussian Conditional

$$
Z \sim \mathcal{N}(\mu_z = X, \sigma_z^2) \Rightarrow P(Z \mid X) \sim \mathcal{N}(\cdot, \cdot)
$$

$$
\Rightarrow \mathcal{P}(Z) \sim \mathcal{N}(\cdot, \cdot)
$$

4. But #3 does not hold if X is passed through a nonlinear function f

$$
W \sim \mathcal{N}(\mu_z = f(X), \sigma_w^2) \stackrel{\longrightarrow}{\longrightarrow} P(W \mid X) \sim \mathcal{N}(\cdot, \cdot)
$$

$$
\stackrel{\longrightarrow}{\longrightarrow} P(\mathbf{W}) \sim \mathcal{N}(\cdot, \cdot)
$$

$$
\begin{aligned} \textbf{Forward Process:} \\ q_\phi(\mathbf{x}_{0:T}) = q(\mathbf{x}_0) \prod_{t=1}^T q_\phi(\mathbf{x}_t \mid \mathbf{x}_{t-1}) \end{aligned}
$$

(Learned) Reverse Process:

$$
p_{\theta}(\mathbf{x}_{0:T}) = p_{\theta}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})
$$

Q: If q_{ϕ} is just adding noise, how can p_θ be interesting at all?

A:

$$
M_{B}(X_{t})
$$

Q: But if $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ is Gaussian, how can it learn a θ such that $p_{\theta}(\mathbf{x}_0) \approx q(\mathbf{x}_0)$? Won't $p_{\theta}(\mathbf{x}_0)$ be Gaussian too?

 $A:$ No. In fact, a diffusion model of sufficient \mathcal{A} , and \mathcal{A} is a diffusion model of sufficient \mathcal{A}

Diffusion Model Analogy

Properties of forward and *exact* reverse processes

Property #1:

$$
q(\mathbf{x}_t | \mathbf{x}_0) \sim \mathcal{N}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})
$$

where $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$

 \Rightarrow we can sample \mathbf{x}_t from \mathbf{x}_0 at any timestep t efficiently in closed form

$$
\Rightarrow \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \text{ where } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

this is the same reparameterization trick from VAEs

Properties of forward and *exact* reverse processes

Property #1:

$$
q(\mathbf{x}_t | \mathbf{x}_0) \sim \mathcal{N}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})
$$

where $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$

 \Rightarrow we can sample x_t from x_0 at any timestep t efficiently in closed form

$$
\Rightarrow \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \text{ where } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

Property #2: Estimating $q(\mathbf{x}_{t-1} | \mathbf{x}_t)$ is intractable because of its dependence on $q(\mathbf{x}_0)$. However, conditioning on x_0 we can efficiently work with:

$$
\underbrace{\left(\frac{q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)}{\mathbf{where} \tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0)}\right)}_{\text{where } \tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0)} = \frac{\sqrt{\bar{\alpha}_t}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_t)}{1 - \bar{\alpha}_t} \mathbf{x}_t}{1 - \bar{\alpha}_t} = \alpha_t^{(0)} \underbrace{\mathbf{x}_0 + \alpha_t^{(t)} \mathbf{x}_t}_{1 - \bar{\alpha}_t} \mathbf{x}_t
$$
\n
$$
\sigma_t^2 = \underbrace{\left(1 - \bar{\alpha}_{t-1}\right)(1 - \alpha_t)}_{1 - \bar{\alpha}_t}
$$

Recall: $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \sim \mathcal{N}(\mu_{\theta}(\mathbf{x}_t, t), \Sigma_{\theta}(\mathbf{x}_t, t))$

Later we will show that given a train‐ ing sample x_0 , we want

 $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$

to be as close as possible to

 $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$

Intuitively, this makes sense: if the learned reverse process is supposed to subtract away the noise, then whenever we're working with a spe‐ cific x_0 it should subtract it away exactly as exact reverse process would have.

Recall: $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \sim \mathcal{N}(\mu_{\theta}(\mathbf{x}_t, t), \mathbf{\Sigma}_{\theta}(\mathbf{x}_t, t))$

Later we will show that given a train‐ ing sample x_0 , we want

 $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$

to be as close as possible to

 $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$

Intuitively, this makes sense: if the learned reverse process is supposed to subtract away the noise, then whenever we're working with a specific x_0 it should subtract it away exactly as exact reverse process would have.

Idea #1: Rather than learn $\Sigma_{\theta}(\mathbf{x}_t, t)$ just use what we know about $q(\mathbf x_{t-1} \mid \mathbf x_{t}, \mathbf x_0) \sim \mathcal N(\tilde{\mu}_q(\mathbf x_{t}, \mathbf x_0), \sigma_t^2 \mathbf I)$:

$$
\Sigma_{\theta}(\mathbf{x}_t, t) = \sigma_t^2 \mathbf{I}
$$

Idea #2: Choose μ_{θ} based on $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$, i.e. we want $\mu_{\theta}(\mathbf{x}_t, t)$ to be close to $\tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0)$. Here are three ways we could parameterize this:

> **Option A:** Learn a network that approximates $\tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0)$ directly from x_t and t:

> > $\mu_{\theta}(\mathbf{x}_t, t) = \mathsf{UNet}_{\theta}(\mathbf{x}_t, t)$

where t is treated as an extra feature in UNet

Recall: $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \sim \mathcal{N}(\mu_{\theta}(\mathbf{x}_t, t), \Sigma_{\theta}(\mathbf{x}_t, t))$

Later we will show that given a train‐ ing sample x_0 , we want

 $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$

to be as close as possible to

 $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$

Intuitively, this makes sense: if the learned reverse process is supposed to subtract away the noise, then whenever we're working with a specific x_0 it should subtract it away exactly as exact reverse process would have.

Idea #1: Rather than learn $\Sigma_{\theta}(\mathbf{x}_t, t)$ just use what we know about $q(\mathbf x_{t-1}\mid \mathbf x_{t}, \mathbf x_{0})\sim \mathcal N(\tilde{\mu}_{q}(\mathbf x_{t}, \mathbf x_{0}), \sigma_{\boldsymbol{t}}^2\mathbf I)$:

$$
\Sigma_{\theta}(\mathbf{x}_t, t) = \sigma_t^2 \mathbf{I}
$$

Idea #2: Choose μ_{θ} based on $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$, i.e. we want $\mu_{\theta}(\mathbf{x}_t, t)$ to be close to $\tilde{\mu}_{q}(\mathbf{x}_t, \mathbf{x}_0)$. Here are three ways we could parameterize this:

> Option B: Learn a network that approximates the real x_0 from only x_t and t:

$$
\mu_{\theta}(\mathbf{x}_t, t) = \alpha_t^{(0)} \mathbf{x}_{\theta}^{(0)}(\mathbf{x}_t, t) + \alpha_t^{(t)} \mathbf{x}_t
$$

where $\mathbf{x}_{\theta}^{(0)}(\mathbf{x}_t, t) = \text{UNet}_{\theta}(\mathbf{x}_t, t)$

Properties of forward and *exact* reverse processes

Property #1:

$$
q(\mathbf{x}_t | \mathbf{x}_0) \sim \mathcal{N}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})
$$

where $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$

 \Rightarrow we can sample x_t from x_0 at any timestep t efficiently in closed form

$$
\Rightarrow \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + (1 - \bar{\alpha}_t) \boldsymbol{\epsilon} \text{ where } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

Property #2: Estimating $q(\mathbf{x}_{t-1} | \mathbf{x}_t)$ is intractable because of its dependence on $q(\mathbf{x}_0)$. However, conditioning on x_0 we can efficiently work with:

$$
q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0), \sigma_t^2 \mathbf{I})
$$

where $\tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\bar{\alpha}_t}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_t)}{1 - \bar{\alpha}_t} \mathbf{x}_t$

$$
= \alpha_t^{(0)} \mathbf{x}_0 + \alpha_t^{(t)} \mathbf{x}_t
$$

$$
\sigma_t^2 = \frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}
$$

Property #3: Combining the two previous properties, we can obtain a diferent parameteriza‐ tion of $\tilde{\mu}_q$ which has been shown empirically to help in learning p_{θ} .

Rearranging $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}$ we have that:

$$
\mathbf{x}_0 = \left(\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}\right) / \sqrt{\bar{\alpha}_t}
$$

Substituting this definition of x_0 into property $#2$'s definition of $\tilde{\mu}_q$ gives:

$$
\tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0) = \alpha_t^{(0)} \mathbf{x}_0 + \alpha_t^{(t)} \mathbf{x}_t
$$
\n
$$
= \alpha_t^{(0)} \left(\left(\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \right) / \sqrt{\bar{\alpha}_t} \right) + \alpha_t^{(t)} \mathbf{x}_t
$$
\n
$$
= \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{(1 - \alpha_t)}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon} \right)
$$

Recall: $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \sim \mathcal{N}(\mu_{\theta}(\mathbf{x}_t, t), \Sigma_{\theta}(\mathbf{x}_t, t))$

Later we will show that given a train‐ ing sample x_0 , we want

 $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$

to be as close as possible to

 $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$

Intuitively, this makes sense: if the learned reverse process is supposed to subtract away the noise, then whenever we're working with a specific x_0 it should subtract it away exactly as exact reverse process would have.

Idea #1: Rather than learn $\Sigma_{\theta}(\mathbf{x}_t, t)$ just use what we know about $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \sim \mathcal{N}(\tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0), \sigma_t^2 \mathbf{I})$:

$$
\Sigma_{\theta}(\mathbf{x}_t, t) = \sigma_t^2 \mathbf{I}
$$

Idea #2: Choose μ_{θ} based on $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$, i.e. we want $\mu_{\theta}(\mathbf{x}_t, t)$ to be close to $\tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0)$. Here are three ways we could parameterize this:

> Option C: Learn a network that approximates the ϵ that gave rise to x_t from x_0 in the forward process from x_t and t:

> > 42 $\mu_{\theta}(\mathbf{x}_t, t) = \alpha_t^{(0)}\mathbf{x}_{\theta}^{(0)}(\mathbf{x}_t, t) + \alpha_t^{(t)}\mathbf{x}_t$ where $\mathbf{x}_{\theta}^{(0)}(\mathbf{x}_t, t) = \left(\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t)\right)$ $\Big)$ $/ \sqrt{\bar{\alpha}}_t$ where $\epsilon_{\theta}(\mathbf{x}_t, t) = \mathsf{UNet}_{\theta}(\mathbf{x}_t, t)$

Learning the Reverse Process

Depending on which of the options for parameterization we pick, we get a different training algorithm.

Later we will show that given a train‐ ing sample x_0 , we want

 $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$

to be as close as possible to

 $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$

Intuitively, this makes sense: if the learned reverse process is supposed to subtract away the noise, then whenever we're working with a specific x_0 it should subtract it away exactly as exact reverse process would have.

