
Recitation: HW3
10-423/10-623
23rd February 2024

2
2
2

2

Agenda

- In context learning, COT
- LoRA
- Instruction Fine Tuning
- Code Walkthrough and Implementation Details

3
3
3

3

Learning from Small Data

How can we learn from a small amount of data?

4
4
4

4

Learning from Small Data

How can we learn from a small amount of data?

Few-Shot learning: Few examples to guide for a new task

Zero-Shot learning: No guiding examples

5
5
5

5

What is Few-Shot Learning?

6
6
6

6

What is Few-Shot Learning?

Cat Cat Cat Dog ?

Apple Grape Banana ?

7
7
7

7

What is ZERO-Shot Learning?

Cat Cat Cat Dog ?

Apple Grape Banana ?

8
8
8

8

What is ZERO-Shot Learning?

?

?

9
9
9

9

How to Approach Few-Shot Learning?

10
10
10

10

How to Approach Few-Shot Learning?
One Answer: Meta Learning

11
11
11

11

What is Meta Learning?

12
12
12

12

What is Meta Learning?
Learning to Learn?

13
13
13

13

What is Meta Learning?
Learning to Learn?
Optimize Few-Shot Learning Performance

14
14
14

14

Learning to Learn?
Optimize Few-Shot Learning Performance

What is Meta Learning?

Cat Cat Cat Dog

Train input example
?

15
15
15

15

Learning to Learn?
Optimize Few-Shot Learning Performance

What is Meta Learning?

Cat Cat Cat Dog

Cat

Train input example
Train target

example
?

16
16
16

16

How Can We Solve This Problem?

Cat Cat Cat Dog

Cat

Train input example
Train target

example
?

17
17
17

17

How Can We Solve This Problem?

Cat Cat Cat Dog

Cat

Train input example
Train target

example
?

One Answer: Treat Like Regular
Supervised Learning

18
18
18

18

How Can We Solve This Problem?

Cat Cat Cat Dog

Cat

Train input example
Train target

example
?

One Answer: Treat Like Regular
Supervised Learning

Transformer
/RNN

19
19
19

19

What is In-Context Learning?

20
20
20

20

What is In-Context Learning?

Cat Cat Cat Dog

Cat

?

LLM

21
21
21

21

What is In-Context Learning?

Cat Cat Cat Dog

Cat

?

LLM

LLMs generate predictions conditioned on the examples during inference
LLMS implicitly learns what parts of contexts to focus on to give the right answer, even for new
unseen tasks - LLMs “know how to learn” even though we didn’t “learn to learn”!

22
22
22

22

Can We Improve In-Context Learning Using Prompt
Engineering?

Cat Cat Cat Dog

Cat

?

LLM

Prompt Engineering: Act of refining input to guide LLMs for desired outputs

23
23
23

23

Can We Improve In-Context Learning Using Prompt
Engineering?

Cat because
stripes

Cat
because
whiskers

Cat
because

nose

Dog
because

eyes

Cat
because
whiskers

?

LLM

24
24
24

24

Can We Improve In-Context Learning Using Prompt
Engineering?

Cat because
stripes

Cat
because
whiskers

Cat
because

nose

Dog
because

eyes

Cat
because
whiskers

?

LLM

“Chain-of-thought prompting”

25
25
25

25

Can We Improve In-Context Learning Using Prompt
Engineering?

“Chain-of-thought
prompting”

(a better example)

26
26
26

26

Can We Improve In-Context Learning Using Prompt
Engineering?

“Chain-of-thought
prompting”

(a better example)

27
27
27

27

Problem with Few-Shot Learning:
Context is Expensive

28
28
28

28

Problem with Few-Shot Learning:
Context is Expensive

We can improve zero-shot learning with prompt engineering

29
29
29

29

Problem with Few-Shot Learning:
Context is Expensive

We can improve zero-shot learning with prompt engineering

30
30
30

30

Adapting LLMs for Specific Tasks using Fine Tuning

- Although pre-trained language models like GPT possess vast language knowledge, they lack
specialization in specific areas.

- Fine-tuning addresses this limitation by allowing the model to learn from domain-specific
data to make it more accurate and effective for targeted applications.

31
31
31

31

What is Full Fine Tuning?

- Full fine-tuning is the process of
training the entire model on the
task-specific data.

- This means all the model layers are
adjusted during the training process.

- BUT, is this always computationally
feasible?

32
32
32

32

Limitations of Full Fine Tuning

- Total Training Memory for a model includes the following:
Model + Optimiser + Activations + Gradients

- When full fine tuning, gradient needs to be calculated for
every parameter. And in full precision training(fp32), the
gradient for each parameter takes up 4 bytes of memory.

- Now imagine training a 13B parameter model. 13B *
4bytes = 52 Gigabytes of memory is required for the
gradients alone!

- What about the time required to backpropagate through
ALL these parameters?

33
33
33

33

LoRA: Low Rank Adaptation

- LoRA addresses some of the drawbacks of full
fine-tuning.

- How?
By freezing the pre-trained model weights and
injecting trainable rank decomposition matrices
into each layer of the Transformer architecture.

34
34
34

34

LoRA Explained

- LoRA reimagines fine tuning not as learning better parameters, but as adjustments
required to the existing parameters to make them better.

35
35
35

35

LoRA Explained

- LoRA hinges on the following concepts:

1. Pre-trained language models have a low “intrinsic dimension”. They can still learn efficiently
despite a random projection to a smaller subspace.

2. If you have a large matrix, with a significant degree of linear dependence (and thus a low intrinsic
dimension), you can express that matrix as a factor of two comparatively small matrices.

36
36
36

36

LoRA Explained

- How are we saving memory with LoRA?
The full 5x5 matrix above has 25 values in it,
whereas if we count the values in the
decomposed matrices, there are just 10 (5 +
5).

- As the matrix we are trying to approximate
gets larger and larger(delta W), we work
with a smaller and smaller proportion of
values in our decomposed matrices(A and
B), compared to the full-size matrix.

37
37
37

37

38
38
38

38

How Does LoRA Work?

- So, first, we freeze the model parameters. We'll be using these parameters to make
inferences, but we won't update them.

39
39
39

39

How Does LoRA Work?

- Then we create two matrices. These are sized in such a way that, when they're multiplied
together, they'll be the same size as the weight matrices of the model we're fine tuning.

40
40
40

40

How Does LoRA Work?

- Then we calculate the the change matrix(delta W)

41
41
41

41

How Does LoRA Work?

- We pass our input through the frozen weights and the change matrix.

42
42
42

42

How Does LoRA Work?

- We calculate the loss and update matrices A and B.

43
43
43

43

How Does LoRA Work?

- At inference time we add the change matrix to the frozen weights and pass the input.

44
44
44

44

How Does LoRA Work?

- P.S: Don’t forget the scaling factor!

45
45
45

45

Instruction Fine Tuning

- Instruction fine-tuning is a technique used to train
the model using examples that demonstrate how it
should respond to a specific instruction.

46
46
46

46

Code
Walkthrough

47
47
47

47

Dataset and Task

Dataset
● Rotten Tomatoes Dataset from HuggingFace.
● Balanced movie review dataset containing positive and negative labels denoting sentiment.

Task
● Movie review - sentiment classification
● Instruction Fine Tuning with PEFT (LoRA)

Why is the task non-trivial?
Instruction: “Predict the sentiment of the following text: You are terrible. Label: ”

GPT2 OOB Response: “ Yes. Murders of this kind…”

48
48
48

48

Code structure

hw3/
● lora.py
● model.py
● dataloader.py
● train.py
● generate.py
● requirements.txt
● run_in_colab.ipynb
● wandb_api.json

modify and upload to gradescope

49
49
49

49

Code structure

hw3/

● lora.py
○ Implement LoRA in this. Some starter code is provided to guide you. Only implement LoRA in a linear layer.
○ def mark_only_lora_as_trainable(model) - Hint: iterate through named_parameters() (Link)

● model.py
○ The vanilla working transformer implementation from HW1 (i.e. without GQA and ROPE). Use your implemented

LoRA in the attention layers.
● dataloader.py

○ custom dataloader implemented for the rotten tomatoes dataset. After running other experiments, customize
the prompt for one of the ques.

● train.py
○ The script for training GPT. This file is long but your only requirement is to make your model lora-friendly. Note:

This is only done if we are using a pretrained model to begin with
● generate.py

○ The script for generating text with your trained (or raw) GPT model. Since we are using a classification dataset,
convert text outputs from the LLM to integer labels.

● requirements.txt
● run_in_colab.ipynb
● wandb_api.json

https://pytorch.org/docs/stable/generated/torch.nn.Module.html

50
50
50

50

How Does LoRA Work?

- We calculate the loss and update matrices A and B.

51
51
51

51

WRITE

52
52
52

52

53
53
53

53

Dataset

Rotten Tomatoes - Movie
Review Dataset (Classification)

gpt2 untrained:
“Predict the sentiment of the
following text: You are terrible.
Label: ”
Response: “ Yes. Murders of this
kind…”

54
54
54

54

Code Structure

-handout
● lora.py
● model.py
● dataloader.py
● train.py
● generate.py
● configs

○ finetune_config_params.py
● configurator.py
● requirements.tx

55
55
55

55

Code Structure

-handout
● lora.py (30-35 lines)

56
56
56

56

Code Structure

-handout
● lora.py (30-35 lines)
● model.py (2 lines)
● dataloader.py (5 lines)
● train.py (1 lines)

Training

57
57
57

57

Code Structure

-handout
● lora.py (30-35 lines)
● model.py (2 lines)
● dataloader.py (5 lines)
● train.py (1 lines)

● generate.py (10 lines)

Training

Evaluation

58
58
58

58

Lora.py

- only add LoRA to the linear layer
- so we tweak Linear Layer to support LoRA

- inherit from the Linear Layer
- We should also be able to use this tweaked layer as our normal Linear layer

if rank<=0.

Helpful PyTorch functions:
● NN Linear Layer (source code to skim through the existing functions): Link

https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear

59
59
59

59

Lora.py

class LoRALinear(nn.Linear):
● __init__() -> create the parameters (only if lora rank is >0)

○ Helpful PyTorch functions:

■ torch.nn.parameter.Parameter(torch.empty(in_dim, out_dim))
Link

● reset_parameter() -> set the initial values for the parameters
○ Helpful PyTorch functions:

■ torch.nn.init (Link)
● forward() -> called in each forward pass of the model
● train() -> called only when model.train() is called
● eval() -> called only when model.eval() is called

https://pytorch.org/docs/stable/generated/torch.nn.parameter.Parameter.html
https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_

60
60
60

60

Wait but why do we need to (re)implement train and
eval?

● How do you know if your weights have been merged in or not?
○ Use self.has_weights_merged

● When do you want your weights to be merged? (train or eval)?
● When do you want your weights to be de-merged? (train or eval)?

● Ensure that your train/eval/forward have weights in the required format
(merged/de-merged) - if not, merge/de-merge them

61
61
61

61

I want The writeup tells me to do full fine tuning with
LoRA layer implemented. How do I do that?

● set r=0
● What this does is it never initializes your lora_a, lora_b matrix

○ so your layer is now the equivalent of Linear.
● Account for this in your train, forward and eval functions! (hint: use

self.is_lora())

62
62
62

62

In LoRA you are only updating lora weight (and no other weights).
How do you ensure that in practice?

Implement def mark_only_lora_as_trainable(model)

Hint: iterate through named_parameters() (Link)

https://pytorch.org/docs/stable/generated/torch.nn.Module.html

63
63
63

63

Additional Files:

● model.py: add lora to attention layers
● dataloader.py: Write your instruction for fine tuning. Also decide if you

want to make your labels more descriptive!

● train.py : make your model actually use lora

!python train.py --init_from=”gpt-medium” --out_dir=”gpt_lora_r:16_alpha:32”

64
64
64

64

Where do I change values of my hyperparams?

● Hyperparameters in LoRA: r, alpha, lr, max_iters..

● finetune_config_params.py

● command line (Eg python train.py --init_dir=”lora-pls-work3”)

65
65
65

65

Generate.py

● Encouraged to just look at the generations gpt2-untrained vs finetuned gpt2
produces (use get_generation(prompt) method in the generate.py)

● Implement your own accuracy function:
○ Check if LoRA actually produced the labels you told it to

■ GPT2 (and other small LMs (Even 7B ones)) may have trouble generating
EOS and so one hack is to ask it to generate a limited number of tokens
and look for labels in the first few characters.

■ Often labels generated will be garbage, make sure to consider those as
negative predictions in your accuracy function

!python generate.py --init_from=”resume” --out_dir=”gpt_lora_r:16_alpha:32”

66
66
66

66

Thank you!

