
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 1: Overview of Optimization
Instructor:1 Matt Gormley August 28, 2023

1.1 Syllabus Highlights

The syllabus is required reading, but here are some of the highlights:

• 1 Exam: in-class, Wed, Nov-08 (20%)

• 6 Quizzes: in-class, lowest score dropped (10%)

• 5-6 Homeworks: five for 425, six for 625 (40%)

– 6 grace days for homework assignments

– Late submissions: 75% day 1, 50% day 2, 25% day 3

– No submissions accepted after 3 days w/o extension

– Extension requests: for emergencies, see syllabus

• 1 Project: teams of 1-2, apply opt. to large scale ML problem (25%)

• Recitations: Fridays, same place and time as lecture

• Technologies: Piazza (discussion), Gradescope (homework), Google
Forms (out-of-class surveys/polls)

• Office Hours: posted on Google Calendar on “Office Hours” page

1.2 What the course is about

The course is broadly about optimization. Despite the fact that it’s a course
in the ML department – this is not solely a course about optimization for

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.
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deep learning. At least the first half of the course will primarily focus on
convex optimization. These ideas are extremely broadly useful.

There are lots of different motivations for the topics we will learn about in
this course. Optimization problems are everywhere in ML, Statistics, and
tons of other disciplines.

1. A deep understanding of optimization will aid in designing algorithms
to solve different types of optimization problems, and in understanding
their relative merits. This will be our primary focus in this course.

2. Just formulating an optimization problem often gives a much deeper
understanding of the problem at hand – for instance, the statistical
analysis of most estimators crucially builds on insights (and charac-
terizations) obtained by formulating the estimator as a solution to an
optimization problem.

3. Finally, knowing the tricks of the optimization trade often aids in creat-
ing new optimization problems (ones with better algorithmic properties
– i.e. are easier to solve, or better statistical properties).

The second half of the course will focus on advanced techniques for optimiza-
tion that are the workhorses of modern machine learning. This will include
both advanced methods of convex optimization, as well as techniques that
can help the types of nonconvex optimization problems that abound in deep
learning. Further, we will explore techniques used for (efficient) distributed
optimization.

Today’s lecture will focus on introducing optimization problems, and convex
optimization problems. This is all from Chapter 1 of the Boyd-Vandenberghe
(henceforth BV) book.
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1.3 Timeline of Optimization and Machine

Learning

Just about the only aspect of my work
in machine translation from five years
ago that is still relevant today is the
survey I wrote on optimization for
MT—plus some datasets and metrics.

Graham Neubig, associate professor,
LTI, CMU

This quote2 captures an important shift that occurred in machine learning
over the last half decade: all the models and many of the associated inference
and learning algorithms we used have since gone by the wayside. However,
convex optimization remains as the bedrock for training even the largest,
most complex models we deal with today.

Below, we consider a (woefully incomplete and a little bit arbitrary) timeline
of some important events in optimization and machine learning.

2With apologies to Graham for what is surely an egregious paraphrase of what he
actually said.
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1847

2023

Cauchy proposes gradient descent for astronomy [? ]

Karush invents KKT conditions for nonlinear opti-
mality [? ]

1939

McCulloch & Pitts invent the Perceptron [? ]

1943

Dantzig invents the simplex algorithm and LP dual-
ity theory [? ]
Robbins & Munro propose stochastic approximation
(SA) [? ]

1951

Kuhn & Tucker popularize KKT conditions [? ]

Kiefer & Wolfowitz apply SA to regression (cf.
SGD) [? ]

Neural net first trained by SGD [? ]

Linnainmaa invents backpropagation [? ]

1970

Momentum used to train neural net [? ]

1986

Liu & Nocedal invent L-BFGS [? ]

1989

CNNs for zip code recognition [? ]

Deep learning takes hold [? ]

2006

Duchi et al. invent AdaGrad [? ]

2011

Adam invented [? ]

2014

AdamW invented [? ]

2019

GPT-3 trained with Adam [? ]

ChatGPT

Chinchilla [? ] and Llama [? ] trained with
AdamW

GPT-4 released

10-425/625 begins
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1.4 (Mathematical) optimization problems

An optimization problem of the form,

min f0(x)

subject to fi(x) ≤ bi, i ∈ {1, . . . ,m}.
Just some terminology:

1. Optimization variables: x ∈ Rd.

2. Objective function: f0 : Rd 7→ R.

3. Constraint functions: fi : Rd 7→ R.

4. Feasible solution: x satisfies all the constraints.

5. Optimal solution: x∗, has smallest value of f0 amongst all vectors
which satisfy constraints.

6. Optimal value: p∗ = inf{f0(x) : fi(x) ≤ 0, i ∈ {1, . . . ,m}}.
• p∗ may not be attained, i.e. there may not be an x∗ for which
f0(x

∗) = p∗.

• p∗ = ∞ if problem is infeasible.

• p∗ = −∞ if problem is unbounded from below.

Background: The infimum (i.e., inf) of a set is useful to us because it
may exist even if the minimum (i.e., min) does not. The inf of a function
f(x) ∈ R is the greatest value of x ∈ R that lower bounds f .

Example 1.1. Consider the function f(x) = 1/x. What is infx∈R:x>0 f(x)?
What is minx∈R:x>0 f(x)?

1.4.1 Examples

It is worth keeping in mind some examples of optimization problems, just so
we have some concrete places to map the terminology we will learn. Here are
some of my favorite optimization problems:
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1. Maximum likelihood

2. Least squares

3. Empirical risk minimization

4. Optimal Transport

Least Squares Let’s consider the Least Squares problem in more detail:
Suppose we have a full rank matrix A ∈ Rm×n, and a vector b ∈ Rm such
that b is not a linear combination of the rows of A. We can’t find x ∈ Rn

such that Ax = b, so instead we want:

min
x

||Ax− b||22
We can expand out the objective to better inspect it using the fact that for
any vector v, ||v||22 = vTv.

||Ax− b||22 = (Ax− b)T (Ax− b)

= (xTATAx)− 2bTAx+ bT b

The x that minimizes this objective is x∗ = (ATA)−1AT b.

1.4.2 Standard form

It is not significantly different, but some authors (particularly BV), refer to
programs in standard form as also additionally allowing equality constraints,
i.e.

min f0(x)

subject to fi(x) ≤ bi, i ∈ {1, . . . ,m}
hi(x) = 0, i ∈ {1, . . . , p}.

1.4.3 Implicit versus explicit constraints

The above optimization problems have some explicit (inequality and equal-
ity) constraints. It is worth noting that in general they also have implicit
constraints, i.e. that,

x ∈ D = dom(f0) ∩
m⋂
i=1

dom(fi) ∩
p⋂

i=1

dom(hi).
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That is to say, these functions may not be defined everywhere, in which
case our optimization problem is implicitly only over vectors where all the
criterion and constraint functions are defined.

If we wanted to be more explicit we might write the standard form optimiza-
tion problem as:

min
x∈D

f0(x)

subject to fi(x) ≤ bi, i ∈ {1, . . . ,m}
hi(x) = 0, i ∈ {1, . . . , p}.

1.4.4 Convex Optimization Problems – Standard Form

Background: In real vector space, a linear function can be written
as f(x) = Ax for A ∈ Rm×n and x ∈ Rn. An affine function includes a
translation of a linear function and so can be written as g(x) = Ax + b
for b ∈ Rm.

A problem of the form,

min
x∈D

f0(x)

subject to fi(x) ≤ bi, i ∈ {1, . . . ,m}
hi(x) = 0, i ∈ {1, . . . , p},

where

1. D is a convex set.

2. f0, f1, . . . , fm are convex functions.

3. hi(x) = aTi x+ bi, are affine functions.

To make sense of this definition we’ll need to understand what convex sets
are, and what convex functions are. This will be what we will spend most of
this and the next lecture on.

For now it is worth noting (and re-visiting once the definitions are in place),
that the explicit constraints define a convex set, and their intersection with
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the domain D is also a convex set. If we denote this convex set C then our
convex optimization problem can be equivalently, succinctly described as:

min
x∈C

f0(x),

i.e. a convex optimization problem is simply the problem of minimizing a
convex function over a convex set.

1.4.5 The Key Feature of Convex Optimization Prob-
lems

The most important structural feature of convex optimization problems is
that every local minima is a global minima. This in turn makes local search
algorithms effective for convex optimization.

We’ll need to define some things in order to make sense of this claim. First,
lets briefly define convex sets and functions:

Definition 1.2 (Convex Set). A set C is convex, if for every x1, x2 ∈ C
and 0 ≤ θ ≤ 1 we have that, θx1 + (1− θ)x2 ∈ C.24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Definition 1.3 (Convex Function). A function f : Rd 7→ R is a convex
function if,

1. dom(f) is a convex set,

2. for every x, y ∈ dom(f), and 0 ≤ θ ≤ 1 we have that,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).
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Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.Definition 1.4 (Nonconvex Function). A function f is said to be non-

convex if it is not convex.

Segue... Next time we’ll see that the key property of convex sets is
this: for a convex optimization problem, a local optimum is also a global
optimum.
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