
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 12: Stochastic Gradient Descent
Instructor:1 Matt Gormley October 4, 2023

Today we’ll talk about the stochastic gradient descent (SGD) algorithm.

12.1 Stochastic Gradient Descent

SGD has a long, rich history and the basic algorithm has been reinvented
many times. The algorithm in roughly the form we study it today is usually
attributed to Robbins and Munro who were trying to find roots of functions
with noisy function access (very similar to function optimization, with noisy
gradient access).

As usual we’re trying to minimize a function f (for now, lets suppose that
f is differentiable, and that we’re interested in solving an unconstrained
problem). In many examples (we’ll see several in this lecture), it will be
natural to hypothesize that rather than obtaining the exact gradient value
∇f(x), at some point x, we are able to compute a vector g(x, ξ) which is a
function of a random variable ξ and has the property that,

Eξ[g(x, ξ)] = ∇f(x).

We’ll generally suppose that ξ has distribution P . The expectation above
is saying that the stochastic gradient g(x, ξ) is an unbiased estimate of the
actual gradient ∇f(x).

The SGD algorithm then simply follows the iterates:

xt+1 = xt − ηtg(x
t, ξt),

where ξt has distribution P , and is drawn independently of everything else.
Often computing g(xt, ξt) will be much faster than computing ∇f(xt), but in
general it can be a very noisy estimate of ∇f(xt) (i.e. it might for instance
have high variance).

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.
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Similar to the subgradient method we’ll need to be careful about our choice
of step-size, i.e. for instance it’s easy to see that (unlike for GD in the smooth
case) fixed step-size choices don’t usually work. If we’re at the optimum x∗,
the gradient might be zero, but the stochastic gradient might still be non-
zero (variance), and we’ll need to carefully choose the step-size to decay to
ensure convergence.

12.2 Some Examples of SGD Algorithms

12.2.1 Noisy Gradients

Maybe the most intuitive setting is where rather than have access to gradi-
ents, we have access to a noisy oracle, i.e. we can make measurements of the
gradient which are corrupted by additive noise, i.e.

g(x, ξ) = ∇f(x) + ξ,

where E[ξ] = 0.

12.2.2 Incremental Gradient Method

This is the idea behind many algorithms (including things like backpropoga-
tion), where we are attempting to minimize a function:

f(x) =
1

n

n∑
i=1

fi(x).

Computing the gradient of f then requires, computing the gradient of each of
f1, . . . , fn, and the incremental gradient method instead just cycles through
the functions, using the updates:

xt+1 = xt − ηt∇fit(x
t),

where it = ((t− 1) mod n) + 1. This isn’t really an SGD algorithm (and can
be reasonably difficult to analyze).

12.2.3 Randomized Incremental Gradient Method

Instead imagine the randomized version – at each iteration we choose an index
it uniformly at random from {1, . . . , n}, and we repeat the same iteration as
above.
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Here ξt denotes the (random) choice of index, and g(x, ξt) = ∇fξt(x). It’s
easy to check that,

E[g(x, ξ)] = ∇f(x),

so this randomized variant is indeed an SGD algorithm.

12.2.4 Incremental Gradient Method (IGM) with Ran-
dom Permutations

In practice, the method above might run into a problem: we might never
see one of the functions fj after some number of iterations. That is, the
random variable it might never equals j — this is a low probability event,
but it would equate to throwing out training examples in machine learning.
So we’d really like to avoid it.

The typical SGD implementation follows the IGM, but at each epoch (i.e.
pass through the the intergers 1, . . . , n) first takes some random permutation
of them and follows that order instead. That is, if the function shuffle(l)
returns a random permutation of l. Then this version does as follows:

s = 0

for t ∈ 1, . . . , T :

for i ∈ shuffle(1, . . . , n):

xs+1 = xs − ηs∇fi(x
s)

s = s+ 1

This is just like Randomized IGM except that where it does sampling with
replacement, this version does sampling without replacement of the integers
1, . . . , n. The result is that in each epoch we see each fi exactly once.

12.2.5 SGD with Momentum

Here we briefly note that another useful trick for dealing with nonconvexity
is to include a momentum term in SGD. The idea is that we include an
additional weight β ∈ [0, 1] that trades off between how much to step in the
direction of the current gradient (small β) and how much to continue moving
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the direction that we have been moving (large β). In short, δ(t) keeps an
exponential moving average of the gradient vectors.

δ(t) = βδ(t−1) + (1− β)∇fit(x
t)

θ(t) = θ(t−1) − ηδ(t)

In practice, we usually implement this within the IGM with Random Per-
mutations setup, shuffling the order in which we visit each fi at the start of
each epoch.

(We will discuss this algorithm in more detail later in the course and explore
it further in the homework.)

12.3 ERM and Population Risk Minimization

Empirical Risk Minimization is one of the standard lenses through which we
come up with algorithms (and statistical analysis) in machine learning. The
so-called “statistical learning” setup, is that we have a loss function, and
an associated risk, i.e. the expected loss. Our goal, broadly speaking, is to
find rules/functions/... which have small risk (i.e. small expected loss) given
some “training samples” from a distribution.

We are typically given samples {(X1, y1), . . . , (Xn, yn)} ∼ PXy and given a
rule/classifier/regressor f , we evaluate it via:

R(f) = EX,y∼PXy
[ℓ(f(X), y)],

where ℓ measures the loss for making a prediction f(X) when the true label
is y.

We cannot directly minimize R to find the best rule since we don’t have
access to the distribution PXy so a standard idea is to instead attempt to
minimize:

Rn(f) =
1

n

n∑
i=1

ℓ(f(Xi), yi),

over candidate functions f .

One can now see at least two connections to SGD:
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1. We can apply the randomized incremental gradient algorithm to the
empirical risk. Usually our rules f will be parametrized by some pa-
rameters, and we’ll be doing SGD on those parameters but for now the
exact details are not so important.

2. Perhaps less obviously – if we only make one pass over the training sam-
ples, then we can view the incremental gradient algorithm as directly
minimizing the population risk, i.e. E[∇ℓ(f(Xi), yi)] = ∇R(f).

This connection is very interesting, i.e. if we can show that one-pass
SGD works in this setting (i.e. converges to something close to the
minimizer of R(f) at some rate) – then we can obtain “generalization
bounds” directly.

To summarize, in the “statistical learning” setting one can view SGD either
as an algorithm for minimizing the empirical risk (in which case, we’ll need to
separately reason about how good the ERM solution is, i.e. separately prove
a generalization bound). Alternatively, one can view it as an algorithm for
minimizing the population risk directly.
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