
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 13: SGD
Instructor:1 Matt Gormley October 9, 2023

Today we’ll continue our discussion of the stochastic gradient descent (SGD)
algorithm for unconstrained optimization.

13.1 Some Examples of SGD Algorithms

Recall from a previous lecture
Last time we considered a variety of examples of SGD-like algorithms:

1. Noisy gradients

2. Incremental gradient method (IGM) (not an SGD algorithm)

3. Randomized IGM

4. IGM with Random Permutations (not quite an SGD algorithm)

5. SGD with momentum (not an SGD algorithm)

13.1.1 Mini-Batch SGD

In the ERM setting, or in the incremental gradient setting we are not re-
stricted to using a single sample (or single function) to compute our stochastic
gradient. Often in practice (due to various communication, data-manipulation
bottlenecks) it will be faster to choose subsets It ⊂ {1, . . . , n} of size m (say),
and compute:

xt+1 = xt − ηt
1

m

∑
i∈It

∇fi(x
t).

If the subsets are chosen uniformly at random from {1, . . . , n} then this is
a valid stochastic gradient. It has a variance which is a factor of m smaller

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.
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https://www.stat.cmu.edu/~siva/teaching/725/
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(but can be m times more expensive to compute). In practice, m is a hyper-
parameter which needs to be tuned carefully.

13.2 A Warm-Up Example

We’d like to develop an understanding of the rates of convergence of the SGD
algorithm, and perhaps some insights on step-size choices, and some insights
on the role of the variance (at least intuitively, it should be the case that the
variance of the stochastic gradients affects how fast the algorithm converges).

Example 13.1 (Incremental Gradient Method). Suppose our goal is to op-
timize a very simple quadratic objective:

min
x

1

2n

n∑
i=1

∥Xi − x∥22.

Suppose we start at x0 = 0. Now, the incremental gradient algorithm would
use the updates for t = {0, . . . , n− 1}.

xt+1 = xt − ηt(x
t −Xt+1) = (1− ηt)x

t + ηtXt+1.

If we use the step-size ηt =
1

t+1
, then we have that,

xt+1 =
txt +Xt+1

t+ 1
.

After n iterations the incremental gradient algorithm would converge to the
optimal solution (just the average of X1, . . . , Xn). One maybe shouldn’t take
too much away from this example (it’s not even an SGD algorithm) but
notice that even in this extremely favorable case (smooth, strongly convex
objective) we needed our step-sizes to decay at the rate 1/(t+ 1).

Example 13.2 (One-pass SGD).

One-pass SGD is a bit more interesting to study. Suppose we are interested
in optimizing the population objective:

min
x

1

2
EX∼P∥X − x∥22.
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We obtain samples X1, . . . , Xn from P . Lets suppose that P has mean µ
and variance σ2. From each sample, we can compute a stochastic gradient
g(xt, Xi) = Xi − xt, and use this in an SGD algorithm. Suppose we use
step-sizes ηt = 1/(t+1), and x0 = 0 as above. In this case, after n iterations
we obtain the solution,

x̂ =
1

n

n∑
i=1

Xi.

Now, we can evaluate the quality of x̂ via its objective value,

1

2
EX∼P∥X − x̂∥22 =

σ2

2
+

σ2

2n
.

On the other hand the optimal solution x∗ is the population mean, which
achieves the objective value,

1

2
EX∼P∥X − µ∥22 =

σ2

2
.

So we see that,

f(x̂)− f(x∗) =
σ2

2n
.

Notice that:

1. Even in this favorable case (smooth, strongly convex objective) we
obtain 1/k-type rates of convergence.

2. Furthermore, we know that this cannot be improved in this case. Stan-
dard statistical lower bounds will tell us that the sample mean is the
best possible estimator here, and that it’s excess error scales exactly
like σ2/2n.

3. In this case, the SGD algorithm which processes a single sample at a
time, and makes a step after each sample, is as good as any estimator
which uses all of the samples X1, . . . , Xn at once.
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13.3 SGD for Lipschitz Convex Functions

Background: (Tower Property of Conditional Expectations) Given
two random variables X and Y , the tower property of conditional expec-
tations states that:

EX [X] = EY [EX [X|Y ]]∑
x

xp(x) =
∑
y

p(y)
∑
x

xp(x|y)

We will now turn our attention to some formal results for the SGD algorithm.
We’ll analyze SGD for non-smooth functions, and here the hypothesis will
be that,

Eξ[g(x, ξ)] ∈ ∂f(x).

Theorem 13.3. Suppose that f is convex, our initialization satisfies ∥x0 −
x∗∥2 ≤ R (for some, not necessarily unique, minimizer x∗ which is fixed
throughout the proof), and the stochastic gradients satisfy,

E∥g(x, ξ)∥22 ≤ G2 for all x,

then if we choose η = R
G
√
k
, we have the guarantee that,

Ef

(
1

k

k∑
t=1

xt

)
− f(x∗) ≤ RG√

k
.

Notice, the main differences between our earlier result for the subgradient
method and this result:

1. We obtain a guarantee that holds in expectation, and we obtain a guar-
antee for the averaged iterate (similar bounds hold in high-probability
and for the last iterate but are a bit more difficult to prove).

2. We make a different hypothesis, essentially that the stochastic gradients
are bounded. This in some sense bounds the variance of the stochastic
gradients (as well as the magnitude of the actual gradients).



Lecture 13: SGD 13-5

3. The SGD algorithm here can be much faster than the subgradient
method (at least in the ERM type problems we discussed earlier). It
achieves the same rate of convergence as a function of k but each iter-
ation of SGD can be much faster than a corresponding iteration of the
sub-gradient method.

Proof: The proof is very similar to that of the subgradient method, except
that we use expectations (and conditional expectations) at various points.
We’re using a fixed step-size across iterations. As usual we have that,

∥xt+1 − x∗∥22 = ∥xt − x∗∥22 + η2∥g(xt, ξ)∥22 − 2η(xt − x∗)Tg(xt, ξ).

Now, take a conditional expectation of both sides, Eξ[· | xt]:

Eξ

[
∥xt+1 − x∗∥22|xt

]
= ∥xt − x∗∥22 + η2Eξ

[
∥g(xt, ξ)∥22|xt

]
− 2η(xt − x∗)TEξ[g(x

t, ξ)|xt]

≤ ∥xt − x∗∥22 + η2G2 − 2η(xt − x∗)Tgxt ,

where gxt ∈ ∂f(xt). Now, we use convexity on the last term to obtain that,

Eξ

[
∥xt+1 − x∗∥22|xt

]
≤ ∥xt − x∗∥22 + η2G2 + 2η(f(x∗)− f(xt)),

and therefore taking an expectation under xt of both sides, Ext [·] and by the
tower property of conditional expectations, EX [X] = EY [EX [X|Y ]],

Eξ

[
∥xt+1 − x∗∥22

]
≤ Ext

[
∥xt − x∗∥22

]
+ η2G2 + 2η(f(x∗)− Ef(xt)).

Re-arranging and telescoping the sum we obtain that,

1

k

k∑
t=1

Ef(xt)− f(x∗) ≤ G2η

2
+

∥x0 − x∗∥22
2kη

.

Now, by convexity we know that,

f

(
1

k

k∑
t=1

xt

)
≤ 1

k

k∑
t=1

f(xt), (13.1)

so we obtain that,

Ef

(
1

k

k∑
t=1

xt

)
− f(x∗) ≤ G2η

2
+

∥x0 − x∗∥22
2kη

,

and using our choice of step-size η = R
G
√
k
this gives the desired result.
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13.4 SGD for Strongly Convex Functions

The key takeaway from this section is that for strongly convex functions,
SGD does not achieve a linear rate of convergence (and additionally assum-
ing smoothness makes no difference). This is primarily due to the variance of
the stochastic gradients, and in some later lecture we might discuss tools for
variance reduction in SGD (which do in some cases yield algorithms with lin-
ear convergence rates for structured smooth and strongly convex functions).

Theorem 13.4. Suppose f is α-strongly convex, and the stochastic gradients
satisfy,

E∥g(x, ξ)∥22 ≤ G2 for all x.

Then,

1. For a fixed step-size η < 1/α, we obtain,

E∥xk − x∗∥22 ≤ (1− αη)k∥x0 − x∗∥22 +
ηG2

α
.

2. For ηt =
1

α(t+1)
,

Ef

(
1

k

k∑
t=1

xt

)
− f(x∗) ≤ G2(1 + log k)

2αk
.

It is worth noticing:

1. The first result suggests that SGD iterates with a fixed step-size, will
converge rapidly to some fixed ball around x∗ and then bounce around
there. This in turn suggests a very common practical epoch-based
heuristic for SGD step-sizes – run it with some fixed step-size, when
it seems like the iterates are bouncing around (or you stop making
progress in function value), then decay it by some factor and continue
running it.

2. In the second case, one can remove the extra log factor with some work
– for instance, if you use an SGD variant where rather than average
all the iterates you only average the last half the log factor can be
eliminated.
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Proof: Suppose we follow our earlier proof to obtain that,

E
[
∥xt+1 − x∗∥22|xt

]
= ∥xt − x∗∥22 + η2tE

[
∥g(xt, ξ)∥22|xt

]
− 2ηt(x

t − x∗)TE[g(xt, ξ)|xt]

≤ ∥xt − x∗∥22 + η2tG
2 − 2ηt(x

t − x∗)T∇f(xt).

The key point to notice here is that previously we would have used the
descent lemma (a consequence of smoothness) to bound the squared norm of
the gradient. However, in the current stochastic gradient setup, the expected
squared norm of the gradient includes two contributions: one which is roughly
the squared norm of the expected gradient which we could hope to control by
smoothness, and the second which is the variance of the stochastic gradients.
This latter term, we should not in general expect to decrease as we get close
to the optimum.

Now, using strong convexity on the last term we obtain that,

E
[
∥xt+1 − x∗∥22|xt

]
≤ ∥xt − x∗∥22 + η2tG

2 − αηt∥xt − x∗∥22 + 2ηt(f(x
∗)− f(xt)).

(13.2)

Proof of Claim 1: Now, to prove the first claim we use a fixed step-size
η and see that,

E
[
∥xt+1 − x∗∥22

]
≤ (1− αη)E[∥xt − x∗∥22] + η2G2,

and so provided that αη < 1 we can unroll this recursion to obtain,

E
[
∥xk − x∗∥22

]
≤ (1− αη)k∥x0 − x∗∥22 +

ηG2

α
.

Proof of Claim 2: Rearranging (13.2), and using the tower property, we
see that,

Ef(xt)− f(x∗) ≤ E [∥xt − x∗∥22]− E[∥xt+1 − x∗∥22]
2ηt

+
ηtG

2

2
− α

2
E[∥xt − x∗∥22].

Now, one can verify that with our choice of step-sizes ηt = 1/α(t+1) the first
two and last terms together telescope, and we are left with −αk∥xk+1−x∗∥22
which is negative and can be dropped. Thus we obtain the bound,

k∑
t=0

[
Ef(xt)− f(x∗)

]
≤ G2

2α

k∑
t=0

ηt ≤
G2(1 + log k)

2α
.

Using the same idea as in (13.1) we obtain the final bound.


	Some Examples of SGD Algorithms
	Mini-Batch SGD

	A Warm-Up Example
	SGD for Lipschitz Convex Functions
	SGD for Strongly Convex Functions

