
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 14: Duality in Linear Programs
Instructor:1 Matt Gormley October 11, 2023

14.1 Summary: Rates of Convergence

Method Convergence
Conditions

Suboptimality
bound

Rate of Con-
vergence
(steps)

Gradient Descent smooth, possibly
nonconvex

O(1/
√
k) O(1/ϵ2)

Gradient Descent smooth, convex O(1/k) O(1/ϵ)
Gradient Descent smooth, strongly

convex
O(γk), γ ∈ (0, 1) O(log(1/ϵ))

Subgradient
Method

non-smooth,
convex, G-
Lipschitz,
bounded subgra-
dients

O(1/
√
k) O(1/ϵ2)

Projected Gradient
Method

smooth, convex,
constrained

O(1/k) O(1/ϵ)

Projected Gradient
Method

smooth, strongly
convex, con-
strained

O(γk), γ ∈ (0, 1) O(log(1/ϵ))

SGD non-smooth,
convex, bounded
stochastic gradi-
ents

O(1/
√
k) O(1/ϵ2)

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.
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https://www.stat.cmu.edu/~siva/teaching/725/
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14.2 What’s next?

Now we’ll depart the world of algorithms and return to talking about the
structure of convex programs. Our focus will be on understanding the con-
cept of duality. We’ll see some uses of the concept of duality as we go along.

We will begin with a discussion of duality in linear programs. Often in LPs,
the dual (also an LP) will be a nice reformulation of the original LP, so just
writing down the dual will give you some insight into the original program.
We’ll also see that duality will give us an answer to a very basic question
in optimization, given a candidate solution x̂ can we give a certificate of its
optimality (we’ve done things like this before) and if it’s not optimal can we
give reasonable bounds on its sub-optimality, i.e. f(x̂)− f(x∗).

14.3 Linear Programs

Linear programs (LPs) are a special sub-class of convex optimization prob-
lems. They were the focus of intense research during WWII, and the period
after that. An LP is simply an optimization problem:

min
x

cTx

subject to Ax = b

Gx ≤ h,

where c ∈ Rd, A ∈ Rm×d, b ∈ Rm, G ∈ Rr×d, h ∈ Rr.

14.3.1 Warm-up Examples

Suppose we want to lower-bound our objective value for some constrained
optimization problem.

min
x,y

x+ 3y

subject to x+ y ≥ 2

x ≥ 0

y ≥ 0

x+ y ≥ 2

+ 2y ≥ 0

= x+ 3y ≥ 2

Lower bound B = 2

Here’s a slightly more general example:
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min
x,y

px+ qy

subject to x+ y ≥ 2

x ≥ 0

y ≥ 0

ax+ ay ≥ 2

bx ≥ 0

cy ≥ 0

Now let a+ b = p

a+ c = q

a, b, c ≥ 0

Lower bound B = 2a, for any a, b, c
satisfying above

What’s the best we can do? Maximize our lower bound over all possible
a, b, c:

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

Called primal LP

max
a,b,c

2a

subject to a+ b = p

a+ c = q

a, b, c ≥ 0

Called dual LP

Notice that the number of dual variables is number of primal constraints.
This is by construction.

14.3.2 Duality in LPs

Definition 14.1 (Dual of a Linear Program). Let’s start with the punchline
by writing down a primal LP and its dual LP. Given c ∈ Rd, A ∈ Rm×d,
b ∈ Rm, G ∈ Rr×d, h ∈ Rr:
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min
x

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u,v

− bTu− hTv

subject to − ATu−GTv = c

v ≥ 0

Dual LP

The idea of duality will seem a bit strange at first. We’re going to develop
a different optimization program (the dual) whose value lower bounds the
value of this linear program (which will now be called the primal).

We notice that, for any vector u ∈ Rm, v ∈ Rr, v ≥ 0, and for any x which is
feasible for the primal, we have that,

uT (Ax− b) + vT (Gx− h) ≤ 0.

This can be re-written as:

(−ATu−GTv)Tx ≥ −uT b− vTh.

Consequently, if we set −ATu−GTv = c, then we obtain that,

cTx ≥ −uT b− vTh.

So every u, v which satisfies the constraints that v ≥ 0 and −ATu−GTv = c
gives us a lower bound uT b+ vTh on our primal objective value. So we could
imagine trying to find the largest possible lower bound, i.e. we could solve
the program:

max
u,v

− uT b− vTh

subject to − ATu−GTv = c

v ≥ 0.

This program is called the dual of our original linear program. Lets make
some quick observations:

1. The dual is also a linear program. It is a maximization program (in
contrast to the primal which was a minimization program).
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2. Each constraint in the primal, yields a variable in the dual. Conversely,
each variable in the primal will yield a constraint in the dual (and
typically we’ll additionally have some non-negativity constraints).

3. By construction, if we denote the primal optimal value by p∗, and the
dual optimal value by d∗ then it is the case that, p∗ ≥ d∗. This is known
as weak duality. It will turn out that under some additional conditions
(say if the primal and dual problems are feasible) it will be the case
that these two values are in fact equal – this is known as strong duality
and we will revisit this later.

4. A useful exercise, is to rewrite the dual as a minimization LP, and then
take its dual (can be done mechanically). What you will observe is that
you will end up back at the primal (up to eliminating some variables,
and switching signs again). Concisely, the dual of the dual LP is the
primal LP. This fact also turns out to be true in more generality.

5. We will say that p∗ = ∞ if the primal is infeasible (i.e. no x satisfies the
constraints), and that d∗ = −∞ if the dual is infeasible. We will say
that the primal is unbounded if p∗ = −∞ and the dual is unbounded if
d∗ = ∞.

Weak duality then tells us the following facts: if the dual is unbounded,
then the primal must be infeasible. Similarly, if the primal is un-
bounded then the dual must be infeasible.
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