10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 15: Lagrangian Duality, KKT Conditions
Instructor:* Matt Gormley October 23, 2023

15.1 Lagrangian Duality in LPs

Our eventual goal will be to derive dual optimization programs for a broader
class of primal programs. The previous approach was tailored very specif-
ically to linear objective functions (and linear constraints), and we won’t
in general be able to re-express the objective exactly as a combination of
constraints.

The idea of Lagrange duality is a powerful generalization — it will look very
similar to what we just did, but will be different in a useful way. Notice that,
for any v and v > 0 and feasible x, we could always write:

e > s +ul (Ar —b) + 0" (Gz — h)

This is true because for a feasible x the second term is 0 and the third term
is negative. We will call this function (the RHS) the Lagrangian and denote
it L(z,u,v).

Now, given the above inequality, we could minimize both sides over feasible
x, i.e. we could write:

p* > min L(z,u,v) > min L(z,u,v) := g(u,v).

x feasible T

where we simply drop the constraints that ensure feasibility of x. This is
convenient for us since we can explicitly minimize with respect to x. We can
see that:

—bTu—hTv ife=—-ATu— GTo
g(u,v) =

—00 otherwise.

So we could simply define the dual problem as follows.

!These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: |here) and were edited and adapted for 10-425/625.
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https://www.stat.cmu.edu/~siva/teaching/725/
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Definition 15.1 (Lagrange Dual).
max g(u,v)

subject to v > 0.

This would be equivalent to our earlier LP dual. Notice, that we didn’t
explicitly use the linearity of our objective function anywhere (in contrast
to our previous approach). As before, notice that by construction we have
that weak duality holds, i.e. p* > d* (where p* and d* are primal and dual
optimal values).

15.2 Ex: Optimal Transport — Kantorovich

Usually most linear programming textbooks give an example of the duality
between the maximum flow and minimum cut problems. Here is a different
example that is quite fun.

The most classical example of LP duality comes from the work of Kantorovich
in the context of optimal transport. Kantorovich invented all of these ideas
(LPs, duality), in an infinite-dimensional context, to study the problem of
optimal transport, and is usually considered the founder of the discipline of
operations research (and of linear programming). We’ve seen a resurgence of
interest in these ideas in ML (partly because of their connection to Wasser-
stein GANS).

Here is a simplified version of the problem of optimal transport. We have
two distributions p and ¢, which are finite discrete measures supported on
{z1,...,2,} and {y1,...,ym}, i.e. we can write:

=1
g=> 0,4
j=1

Our broad goal is to transport/re-arrange the mass from p to gq.

We are given some cost matrix C' € R™*" where Cj; is the cost of moving a
unit mass from z; to y;. (You can think of the cost as the distance between
the points z; and y;).
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Now, we would like to come up with a transport plan M € R™*", where M;;
indicates the amount of mass we're moving from location z; to location y;.
Ideally, we’d like our transport plan to have minimal cost. This corresponds
to solving the following LP.

m]Vi[n E CijMij7

j

subject to ZMU =p; forallie{l,...,n}
j=1

Zsz:qJ’ for all j € {1,...,m},

i=1

MZ] ZO,(Z,]) 6{1,,m} X {]_,,TL}

The constraints ensure that our transport plan actually moves all the mass
of p to q.

Lets derive the dual of this problem. We first write the Lagrangian,

L(M,u,v,w) = Z CijM;; + Zul (pi — Z Mz‘j) + Zvj (qj — Z Mij) — ZwijMijy
ij i=1 j=1 Jj=1 1=1 ij

where w;; > 0. To derive the dual we simply minimize this function with
respect to M, to obtain the dual function:

n m . o
D iy Wibi + 22 vy, i Cij —u — v —wi; =0
—oo otherwise.

g(u,v,w) = {

The dual LP is simply to maximize g(u, v, w) with w;; > 0. This yields the
following dual LP:

n m
max E u;p; + E V;4;
u,v,w

i=1 j=1

subject to Cj; — u; — v; —w;; =0,
wij 2 07



Lecture 15: Lagrangian Duality, KK'T' Conditions 15-4

or equivalently,

subject to u; + v; < Cj;.

This dual is sometimes called a Shipper’s problem. Say our original goal was
to transport p to q. A shipper approaches us, and agrees to ship p to g for
us, and we only have to pay the shipper costs for loading and unloading.
The shipper tells us that the cost for loading a unit of mass at x; is u; and
unloading at y; is v;.

For us to accept the deal, it seems reasonable to want that u; +v; < Cy; (i.e.
the cost we’d pay the shipper to load and unload should be less than the cost
we'd pay to ship ourselves).

The shipper in turn will try to maximize his/her profit (the total loading,
unloading price he/she can charge you) subject to you accepting the deal. So
the shipper will attempt to solve the dual to decide loading/unloading costs.

Weak duality tells us that this will always be a good deal for us (i.e. the
total amount of money we pay the shipper will be less than what it would
have cost us to ship things ourselves). In this case, strong duality will tell
you that a clever shipper (one who solves the dual) can make us pay him/her
the same amount as we would have paid to ship things ourselves.

15.3 Lagrangian Dual in General

We will now start working with a broader class of optimization problems.
Suppose we are interested in understanding a problem of the form:

min f(x)
subject to h;(xz) <0 i€ {l,...,m}
li(z) =0, je{l,...,r}



Lecture 15: Lagrangian Duality, KK'T' Conditions 15-5

For now, nothing needs to be convex. We can proceed as before, and notice
that for any u, v > 0, and feasible z, we have that,

f(x) > flx)+ Z ul;(z) + Zujhj@c) = L(x,u,v),

where v > 0. We can alternatively, define L(x,u,v) = —oo if any component
of v < 0. Often the variables u, v are either referred to as dual variables or
Lagrange multipliers.

We then have that,

Pt = ?111_}01 f(z) > min L(z, u,v) := g(u,v).

So as before, we can define our (Lagrange) dual problem as:

max g(u, v)

u,v

subject to v > 0.

Notice that defining this problem (and observing that weak duality holds)
made no mention of convexity. These basic properties hold in general.

15.3.1 Dual is always concave maximization

We have already observed above that the dual problem could be defined, and
lower bounds the primal problem, in general. Now, we’ll additionally note
that even if our primal constraints and objective are arbitrary (i.e. not con-
vex) the dual function g(u,v) is always a concave function. Consequently, the
dual program is always “nice”, i.e. involves maximizing a concave function
over a convex set.

To see this we observe that,
g(u,v) = min | f(z) + > uili(x) + > vihi(x) |
j=1 i=1

is the pointwise minimum of a set of affine functions which is always concave.
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15.3.2 Interpreting the Dual

There are lots of ways to think about what we're doing. One is to think
of first re-writing the constraints as part of the objective. In this case, we
would have that the primal is equivalent to:

m

min f(z) + ZW;‘(@“) =0)+ > I(hy(x) <0),

i=1

where the indicators are 0 if their condition is satisfied and co otherwise.
This function penalizes us infinitely for violating the constraints. We can
view our Lagrange dual as similar in spirit but the penalty is softer, and
depends on the magnitude of the Lagrange multipliers.

The Lagrange dual function is for v > 0,

g(u,v) = min f(z) + D wiby(a) + 3 vih(a).

If we satisty the constraints, then the penalty is 0 for the equality constraints
(i.e. the Lagrange multipliers have no effect). We are in fact “encouraged”
to strictly satisfy the inequality constraints. On the other hand when we
violate the constraints we pay a “linear” penalty (depending on the sign and
magnitude of the Lagrange multipliers). The linear function can be quite a
bad approximation of the indicator function (but not if we’re judicious in our
choice of the Lagrange multipliers). At the very least however we can observe
that, u;¢;(z) < I(¢; = 0), and v;h;(z) < I(h;(z) < 0), so our linear penalty
is at least an underestimate of the indicator penalty. This is just a different
way of seeing that the dual function g(u,v) lower bounds the primal.

15.3.3 Certificates of Sub-Optimality

One of our advertised uses of duality, was that the dual would give us a
way to bound the so-called sub-optimality gap. The following is a direct
implication of weak duality, for any x feasible, u,v > 0:

flx) =p" < fz) — g(u,v).

In words, given any feasible primal, dual solutions we can provide a bound
on the sub-optimality.
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This is most useful for problems in which strong duality holds, in which case
the difference f(z) — g(u,v) would approach zero if (z, (u,v)) approached
a saddle point (z*, (u*,v*)). This idea is at the heart of so-called primal-
dual algorithms which attempt to simultaneously take descent steps on the
Lagrangian (with respect to the primal variables), together with ascent steps
on the Lagrangian (with respect to the dual variables).
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