
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 16: Newton’s Method, Log-Barrier Method
Instructor:1 Matt Gormley October 25, 2023

Today we will begin by studying our first second-order optimization algo-
rithm: Newton’s method. Although this first algorithm doesn’t relate to
the ideas of duality that we just studied, we will revisit them as we explore
interior-point methods. The other algorithm we will briefly look at today is
the Log-Barrier Method. The particular formulation we’ll discuss will only
consider the primal (not the dual), but other primal-dual versions of this
algorithm exist as well.

16.1 Newton’s Method

16.1.1 The Algorithm

Newton’s method Given unconstrained, smooth convex optimization

min
x

f(x)

where f is convex, twice differentable, and dom(f) = Rn. Recall that gradi-
ent descent chooses initial x(0) ∈ Rn, and repeats

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

In comparison, Newton’s method repeats

x(k) = x(k−1) −
(
∇2f(x(k−1))

)−1∇f(x(k−1)), k = 1, 2, 3, . . .

Here ∇2f(x(k−1)) is the Hessian matrix of f at x(k−1).

Example: Newton’s Method vs. Gradient Descent Consider mini-
mizing f(x) = (10x2

1+x2
2)/2+5 log(1+e−x1−x2) (this must be a nonquadratic

... why?)

1These notes were originally written by Ryan Tibshirani for 10-725 Fall 2019 (original
version: here) and were edited and adapted for 10-425/625.

16-1

https://www.stat.cmu.edu/~ryantibs/convexopt/
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We compare gradient descent
(black) to Newton’s method
(blue), where both take steps
of roughly same length
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Notice that gradient descent moves in a direction that is orthogonal to the
contour lines of the function. By contrast, Newton’s method chooses a di-
rection that moves to the minimum much more quickly.

16.1.2 Newton’s method interpretation

Minimizing a quadratic local approximation Recall the motivation
for gradient descent step at x: we minimize the quadratic approximation

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
∥y − x∥22

over y, and this yields the update x+ = x − t∇f(x). This comes from ap-
proximating the Hessian as 1

t
I in a second-order Taylor series approximation

(i.e. (y − x)T 1
t
I(y − x) = 1

t
∥y − x∥22.

Newton’s method uses in a sense a better quadratic approximation

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x)

and minimizes over y to yield x+ = x − (∇2f(x))−1∇f(x). This is exactly
the second-order Taylor series approximation that we’ve seen before.
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Minimizing this second quadratic yields the Newton’s method update.

Q(y) = f(x) +∇xf(x)
T (y − x) +

1

2
(y − x)T∇2

xf(x)(y − x)

∇yQ(y) = ∇xf(x) +∇2
xf(x)(y − x)

∇yQ(y) = 0 ⇒ y = x− (∇2
xf(x))

−1∇f(x)

Linearized optimality condition Newton’s method was originally in-
vented to solve a system of nonlinear equations F (x) = 0 (polynomial equa-
tions). The idea was to repeatedly update the variables until convergence.

Aternative interpretation of Newton step at x: we seek a direction v so that
∇f(x + v) = 0. Let F (x) = ∇f(x). Consider linearizing F around x, via a
first-order approximation:

0 = F (x+ v) ≈ F (x) + F ′(x)v

Solving for v yields v = −(F ′(x))−1F (x) = −(∇2f(x))−1∇f(x).486 9 Unconstrained minimization

f ′

f̂ ′

(x, f ′(x))

(x + ∆xnt, f
′(x + ∆xnt))

Figure 9.18 The solid curve is the derivative f ′ of the function f shown in

figure 9.16. f̂ ′ is the linear approximation of f ′ at x. The Newton step ∆xnt

is the difference between the root of f̂ ′ and the point x.

the zero-crossing of the derivative f ′, which is monotonically increasing since f is
convex. Given our current approximation x of the solution, we form a first-order
Taylor approximation of f ′ at x. The zero-crossing of this affine approximation is
then x + ∆xnt. This interpretation is illustrated in figure 9.18.

Affine invariance of the Newton step

An important feature of the Newton step is that it is independent of linear (or
affine) changes of coordinates. Suppose T ∈ Rn×n is nonsingular, and define
f̄(y) = f(Ty). Then we have

∇f̄(y) = TT ∇f(x), ∇2f̄(y) = TT ∇2f(x)T,

where x = Ty. The Newton step for f̄ at y is therefore

∆ynt = −
(
TT ∇2f(x)T

)−1 (
TT ∇f(x)

)

= −T−1∇2f(x)−1∇f(x)

= T−1∆xnt,

where ∆xnt is the Newton step for f at x. Hence the Newton steps of f and f̄ are
related by the same linear transformation, and

x + ∆xnt = T (y + ∆ynt).

The Newton decrement

The quantity

λ(x) =
(
∇f(x)T ∇2f(x)−1∇f(x)

)1/2

is called the Newton decrement at x. We will see that the Newton decrement
plays an important role in the analysis of Newton’s method, and is also useful

(From B & V page 486)

History: work of Newton (1685) and
Raphson (1690) originally focused on
finding roots of polynomials. Simp-
son (1740) applied this idea to general
nonlinear equations, and minimization
by setting the gradient to zero

Affine invariance of Newton’s method Important property Newton’s
method: affine invariance. Given f , nonsingular A ∈ Rn×n. Let x = Ay, and
g(y) = f(Ay). Newton steps on g are

y+ = y −
(
∇2g(y)

)−1∇g(y)

= y −
(
AT∇2f(Ay)A

)−1
AT∇f(Ay)

= y − A−1
(
∇2f(Ay)

)−1∇f(Ay)

Hence
Ay+ = Ay −

(
∇2f(Ay)

)−1∇f(Ay)
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i.e.,

x+ = x−
(
∇2f(x)

)−1∇f(x)

So progress is independent of problem scaling. This is not true of gradient
descent!

16.1.3 Damped Newton’s method

Backtracking line search So far we’ve seen pure Newton’s method. This
need not converge. In practice, we use damped Newton’s method (typically
just called Newton’s method), which repeats

x+ = x− t
(
∇2f(x)

)−1∇f(x)

Note that the pure method uses t = 1

Step sizes here are chosen by backtracking search, with parameters 0 < α ≤
1/2, 0 < β < 1. At each iteration, start with t = 1, while

f(x+ tv) > f(x) + αt∇f(x)Tv

we shrink t = βt, else we perform the Newton update. Note that here
v = −(∇2f(x))−1∇f(x), so ∇f(x)Tv = −λ2(x)

Example: logistic regression Logistic regression example, with n = 500,
p = 100: we compare gradient descent and Newton’s method, both with
backtracking
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Newton’s method: in a totally different regime of convergence...!

Back to logistic regression example: now x-axis is parametrized in terms of
time taken per iteration
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Each gradient descent step is O(p), but each Newton step is O(p3)
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16.2 Log-Barrier Method

16.2.1 The log-barrier function

Log barrier function Consider the convex optimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

Ax = b

We will assume that f , h1, . . . , hm are convex, twice differentiable, each with
domain Rn. The function

ϕ(x) = −
m∑

i=1

log(−hi(x))

is called the log barrier for the above problem. Its domain is the set of strictly
feasible points, {x : hi(x) < 0, i = 1, . . . ,m}, which we assume is nonempty.
(Note this implies strong duality holds)

Ignoring equality constraints for now, our problem can be written as

min
x

f(x) +
m∑

i=1

I{hi(x)≤0}(x)

11.2 Logarithmic barrier function and central path 563

u
−3 −2 −1 0 1

−5

0

5

10

Figure 11.1 The dashed lines show the function I−(u), and the solid curves

show Î−(u) = −(1/t) log(−u), for t = 0.5, 1, 2. The curve for t = 2 gives
the best approximation.

The problem (11.3) has no inequality constraints, but its objective function is not
(in general) differentiable, so Newton’s method cannot be applied.

11.2.1 Logarithmic barrier

The basic idea of the barrier method is to approximate the indicator function I−
by the function

Î−(u) = −(1/t) log(−u), dom Î− = −R++,

where t > 0 is a parameter that sets the accuracy of the approximation. Like
I−, the function Î− is convex and nondecreasing, and (by our convention) takes

on the value ∞ for u > 0. Unlike I−, however, Î− is differentiable and closed:
it increases to ∞ as u increases to 0. Figure 11.1 shows the function I−, and

the approximation Î−, for several values of t. As t increases, the approximation
becomes more accurate.

Substituting Î− for I− in (11.3) gives the approximation

minimize f0(x) +
∑m

i=1 −(1/t) log(−fi(x))
subject to Ax = b.

(11.4)

The objective here is convex, since −(1/t) log(−u) is convex and increasing in u,
and differentiable. Assuming an appropriate closedness condition holds, Newton’s
method can be used to solve it.

The function

φ(x) = −
m∑

i=1

log(−fi(x)), (11.5)

We can approximate the sum of indicators
by the log barrier:

min
x

f(x)− 1

t

m∑

i=1

log(−hi(x))

where t > 0 is a large number

This approximation is more accurate for larger t. But for any value of t, the
log barrier approaches ∞ if any hi(x) → 0
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Log barrier calculus

For the log barrier function

ϕ(x) = −
m∑

i=1

log(−hi(x))

we have for its gradient:

∇ϕ(x) = −
m∑

i=1

1

hi(x)
∇hi(x)

and for its Hessian:

∇2ϕ(x) =
m∑

i=1

1

hi(x)2
∇hi(x)∇hi(x)

T −
m∑

i=1

1

hi(x)
∇2hi(x)

16.2.2 The Algorithm

Barrier method The barrier method solves a sequence of problems

min
x

tf(x) + ϕ(x)

subject to Ax = b

for increasing values of t > 0, until duality gap satisfies m/t ≤ ϵ. We fix
t(0) > 0, µ > 1. We use Newton to compute x(0) = x⋆(t), solution to barrier
problem at t = t(0). For k = 1, 2, 3, . . .

• Solve the barrier problem at t = t(k), using Newton initialized at x(k−1),
to yield x(k) = x⋆(t)

• Stop if m/t ≤ ϵ, else update t(k+1) = µt

The first step above is called a centering step (since it brings x(k) onto the
central path)

Considerations:

• Choice of µ: if µ is too small, then many outer iterations might be
needed; if µ is too big, then Newton’s method (each centering step)
might take many iterations
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• Choice of t(0): if t(0) is too small, then many outer iterations might be
needed; if t(0) is too big, then the first Newton solve (first centering
step) might require many iterations

Fortunately, the performance of the barrier method is often quite robust to
the choice of µ and t(0) in practice

(However, note that the appropriate range for these parameters is scale de-
pendent)

Example of a small LP in n = 50 dimensions, m = 100 inequality constraints
(from B & V page 571):

572 11 Interior-point methods
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Figure 11.4 Progress of barrier method for a small LP, showing duality
gap versus cumulative number of Newton steps. Three plots are shown,
corresponding to three values of the parameter µ: 2, 50, and 150. In each
case, we have approximately linear convergence of duality gap.

Newton’s method is λ(x)2/2 ≤ 10−5, where λ(x) is the Newton decrement of the
function tcT x + φ(x).

The progress of the barrier method, for three values of the parameter µ, is
shown in figure 11.4. The vertical axis shows the duality gap on a log scale. The
horizontal axis shows the cumulative total number of inner iterations, i.e., Newton
steps, which is the natural measure of computational effort. Each of the plots has
a staircase shape, with each stair associated with one outer iteration. The width of
each stair tread (i.e., horizontal portion) is the number of Newton steps required
for that outer iteration. The height of each stair riser (i.e., the vertical portion) is
exactly equal to (a factor of) µ, since the duality gap is reduced by the factor µ at
the end of each outer iteration.

The plots illustrate several typical features of the barrier method. First of all,
the method works very well, with approximately linear convergence of the duality
gap. This is a consequence of the approximately constant number of Newton steps
required to re-center, for each value of µ. For µ = 50 and µ = 150, the barrier
method solves the problem with a total number of Newton steps between 35 and 40.

The plots in figure 11.4 clearly show the trade-off in the choice of µ. For µ = 2,
the treads are short; the number of Newton steps required to re-center is around 2
or 3. But the risers are also short, since the duality gap reduction per outer iteration
is only a factor of 2. At the other extreme, when µ = 150, the treads are longer,
typically around 7 Newton steps, but the risers are also much larger, since the
duality gap is reduced by the factor 150 in each outer iteration.

The trade-off in choice of µ is further examined in figure 11.5. We use the
barrier method to solve the LP, terminating when the duality gap is smaller than
10−3, for 25 values of µ between 1.2 and 200. The plot shows the total number
of Newton steps required to solve the problem, as a function of the parameter µ.
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