10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 16: Newton’s Method, Log-Barrier Method
Instructor:* Matt Gormley October 25, 2023

Today we will begin by studying our first second-order optimization algo-
rithm: Newton’s method. Although this first algorithm doesn’t relate to
the ideas of duality that we just studied, we will revisit them as we explore
interior-point methods. The other algorithm we will briefly look at today is
the Log-Barrier Method. The particular formulation we’ll discuss will only
consider the primal (not the dual), but other primal-dual versions of this
algorithm exist as well.

16.1 Newton’s Method

16.1.1 The Algorithm
Newton’s method Given unconstrained, smooth convex optimization
min f(x)

where f is convex, twice differentable, and dom(f) = R™. Recall that gradi-
ent descent chooses initial (%) € R™, and repeats

g®) = g*=D V() k=1,2,3,...
In comparison, Newton’s method repeats
2® = 6D (V) V) k=123,
Here V2 f(x*~V) is the Hessian matrix of f at z(*~1,
Example: Newton’s Method vs. Gradient Descent Consider mini-

mizing f(x) = (102 +23)/2+51og(1+e~"17*2) (this must be a nonquadratic
.. why?)

!These notes were originally written by Ryan Tibshirani for 10-725 Fall 2019 (original
version: here) and were edited and adapted for 10-425/625.
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https://www.stat.cmu.edu/~ryantibs/convexopt/
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Notice that gradient descent moves in a direction that is orthogonal to the
contour lines of the function. By contrast, Newton’s method chooses a di-
rection that moves to the minimum much more quickly.

16.1.2 Newton’s method interpretation

Minimizing a quadratic local approximation Recall the motivation
for gradient descent step at x: we minimize the quadratic approximation

Fl) ~ F@) + V(@) — ) + oy — ol

over y, and this yields the update z* = x — tV f(x). This comes from ap-

proximating the Hessian as %[ in a second-order Taylor series approximation
(ie. (y —a) {1y —x) = {lly — =[5

Newton’s method uses in a sense a better quadratic approximation

Fl) ~ F@) + V@) (= 2)+ 5~ 07 @)y — )

and minimizes over y to yield 2t = x — (V2f(z)) 'V f(z). This is exactly
the second-order Taylor series approximation that we’ve seen before.
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Minimizing this second quadratic yields the Newton’s method update.

Qly) = F(2) + Vo () (y = 2) + 5 (y — 2) V2 @)y — 2

VyQy) = Vof(x) + Vif(x)(y — x)
V,Qy) =0=y=x—(Vif(x) 'Vf(z)

Linearized optimality condition Newton’s method was originally in-
vented to solve a system of nonlinear equations F'(z) = 0 (polynomial equa-
tions). The idea was to repeatedly update the variables until convergence.

Aternative interpretation of Newton step at x: we seek a direction v so that
Vf(x+v)=0. Let F(z) = Vf(x). Consider linearizing F' around z, via a
first-order approximation:

0=F(z+v)~ F(x)+ F'(z)v
Solving for v yields v = —(F'(z)) ' F(z) = —(V2f(z))" 'V f(x).

History: work of Newton (1685) and
Raphson (1690) originally focused on
finding roots of polynomials. Simp-
son (1740) applied this idea to general
nonlinear equations, and minimization
by setting the gradient to zero

(From B & V page 486)

Affine invariance of Newton’s method Important property Newton’s
method: affine invariance. Given f, nonsingular A € R"*". Let x = Ay, and
g(y) = f(Ay). Newton steps on g are

=y — (V29(y)) 'Vgly )
=y — (ATV2f(Ay)A) ' A
=y— A" 1(V2f(Ay))_ Vf( )

Hence

Ayt = Ay — (V2f(Ay)) 'V f(Ay)
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ie.,

vt =z (Vf(2)) V()

So progress is independent of problem scaling. This is not true of gradient
descent!

16.1.3 Damped Newton’s method

Backtracking line search So far we’ve seen pure Newton’s method. This
need not converge. In practice, we use damped Newton’s method (typically
just called Newton’s method), which repeats

=2 — t(VZf(ZE))71Vf(ZL‘)

Note that the pure method uses ¢t = 1

Step sizes here are chosen by backtracking search, with parameters 0 < a <
1/2, 0 < 8 < 1. At each iteration, start with ¢ = 1, while

flz +tv) > f(x) + atVf(z)Tv

we shrink t = [t, else we perform the Newton update. Note that here
v=—(V2f(2))"'Vf(z),so Vf(z)Tv=—N(z)

Example: logistic regression Logistic regression example, with n = 500,
p = 100: we compare gradient descent and Newton’s method, both with
backtracking
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— Gradient descent
—— Newton's method
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Newton’s method: in a totally different regime of convergence...!

Back to logistic regression example: now x-axis is parametrized in terms of
time taken per iteration

—— Gradient descent
—— Newton's method
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Each gradient descent step is O(p), but each Newton step is O(p?)
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16.2 Log-Barrier Method

16.2.1 The log-barrier function

Log barrier function Consider the convex optimization problem

min f(z)
subject to  h;(z) <0,i=1,...,m
Ar=1b
We will assume that f, hq,...,h,, are convex, twice differentiable, each with

domain R". The function

- Z log(—
i=1

is called the log barrier for the above problem. Its domain is the set of strictly
feasible points, {z : h;(z) <0, ¢ =1,...,m}, which we assume is nonempty.
(Note this implies strong duality holds)

[gnoring equality constraints for now, our problem can be written as

mmf —|—Z[{h <0}

We can approximate the sum of indicators
by the log barrier:

mm f(x ——Zlog

. ‘ ‘ ‘ where ¢ > 0 is a large number
-3 -2 —1 0 1
u

This approximation is more accurate for larger t. But for any value of ¢, the
log barrier approaches oo if any h;(z) — 0
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Log barrier calculus

For the log barrier function

we have for its gradient:

=1 hl(x)
and for its Hessian:
2 _ - 1 , T — 1 27
V3p(x) = Zl WO (x)Qth(x)Vhl(x) Zl n (@v hi(z)

16.2.2 The Algorithm

Barrier method The barrier method solves a sequence of problems

min tf (@) + é(x)

xT

subject to Az =0

for increasing values of ¢t > 0, until duality gap satisfies m/t < e. We fix
t© >0, 4 > 1. We use Newton to compute z(*) = z*(¢), solution to barrier
problem at ¢t =t For k=1,2,3,...

e Solve the barrier problem at ¢ = t*) using Newton initialized at x(*=1),

to yield z® = z*(t)

(k+1)

e Stop if m/t < e, else update t = ut

The first step above is called a centering step (since it brings z*) onto the
central path)

Considerations:

e Choice of u: if p is too small, then many outer iterations might be
needed; if p is too big, then Newton’s method (each centering step)
might take many iterations
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e Choice of t): if t(© is too small, then many outer iterations might be
needed; if ¢ is too big, then the first Newton solve (first centering
step) might require many iterations

Fortunately, the performance of the barrier method is often quite robust to
the choice of y and ¢ in practice

(However, note that the appropriate range for these parameters is scale de-
pendent)

Example of a small LP in n = 50 dimensions, m = 100 inequality constraints
(from B & V page 571):
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Newton iterations
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