
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 17: Newton’s Method Analysis
Instructor:1 Matt Gormley October 30, 2023

17.1 Newton’s Method

Recall from a previous lecture

17.1.1 The Algorithm

Newton’s method Given unconstrained, smooth convex optimization

min
x

f(x)

where f is convex, twice differentable, and dom(f) = Rn.

Newton’s method repeats

x(k) = x(k−1) −
(
∇2f(x(k−1))

)−1∇f(x(k−1)), k = 1, 2, 3, . . .

Here ∇2f(x(k−1)) is the Hessian matrix of f at x(k−1).

17.1.2 Newton’s method interpretation

Newton decrement At a point x, we define the Newton decrement as

λ(x) =
(
∇f(x)T

(
∇2f(x)

)−1∇f(x)
)1/2

1These notes were originally written by Ryan Tibshirani for 10-725 Fall 2019 (original
version: here) and were edited and adapted for 10-425/625.

17-1

https://www.stat.cmu.edu/~ryantibs/convexopt/

Lecture 17: Newton’s Method Analysis 17-2

This relates to the difference between f(x) and the minimum of its quadratic
approximation:

f(x)−min
y

(
f(x) +∇f(x)T (y − x) +

1

2
(y − x)T∇2f(x)(y − x)

)
= f(x)−

(
f(x)− 1

2
∇f(x)T

(
∇2f(x)

)−1∇f(x)
)

=
1

2
λ(x)2

Therefore can think of λ2(x)/2 as an approximate upper bound on the sub-
optimality gap f(x)− f ⋆

Another interpretation of Newton decrement: if Newton direction is v =
−(∇2f(x))−1∇f(x), then

λ(x) =
(
vT∇2f(x)v

)1/2
= ∥v∥∇2f(x)

i.e., λ(x) is the length of the Newton step in the norm defined by the Hessian
∇2f(x)

Note that the Newton decrement, like the Newton steps, are affine invariant;
i.e., if we defined g(y) = f(Ay) for nonsingular A, then λg(y) would match
λf (x) at x = Ay

Recall from a previous lecture

17.1.3 Damped Newton’s method

Backtracking line search So far we’ve seen pure Newton’s method. This
need not converge. In practice, we use damped Newton’s method (typically
just called Newton’s method), which repeats

x+ = x− t
(
∇2f(x)

)−1∇f(x)

Note that the pure method uses t = 1

Step sizes here are chosen by backtracking search, with parameters 0 < α ≤
1/2, 0 < β < 1. At each iteration, start with t = 1, while

f(x+ tv) > f(x) + αt∇f(x)Tv

Lecture 17: Newton’s Method Analysis 17-3

we shrink t = βt, else we perform the Newton update. Note that here
v = −(∇2f(x))−1∇f(x), so ∇f(x)Tv = −λ2(x)

17.1.4 Analysis

Convergence analysis Recall that gradient descent converges at a rate of
ck for some constant c. We’re going to see that Newton’s method converges
at a rate of (1/2)2

k
, a totally different regime of convergence! Note also,

that we need backtracking line search for this work; Newton’s method won’t
converge without it.

Assume that f convex, twice differentiable, having dom(f) = Rn, and addi-
tionally

• ∇f is Lipschitz with parameter L

• f is strongly convex with parameter m

• ∇2f is Lipschitz with parameter M

Theorem: Newton’s method with backtracking line search satisfies the
following two-stage convergence bounds

f(x(k))− f ⋆ ≤

(f(x(0))− f ⋆)− γk if k ≤ k0
2m3

M2

(1
2

)2k−k0+1

if k > k0

Here γ = αβ2η2m/L2, η = min{1, 3(1−2α)}m2/M , and k0 is the number
of steps until ∥∇f(x(k0+1))∥2 < η

In short, there are two phases of the Newton’s method progression: in the
first phase (k ≤ k0), it converges slowly. But then it reaches some point
(k > k0) after which it converges very fast—and, in this second phase, the
backtracking line search will only take one step every time.

In more detail, convergence analysis reveals γ > 0, 0 < η ≤ m2/M such that
convergence follows two stages

• Damped phase: ∥∇f(x(k))∥2 ≥ η, and

f(x(k+1))− f(x(k)) ≤ −γ

Lecture 17: Newton’s Method Analysis 17-4

• Pure phase: ∥∇f(x(k))∥2 < η, backtracking selects t = 1, and

M

2m2
∥∇f(x(k+1))∥2 ≤

(M

2m2
∥∇f(x(k))∥2

)2

Note that once we enter pure phase, we won’t leave, because

2m2

M

(M

2m2
η
)2

≤ η

when η ≤ m2/M

Here we prove only the result for the pure phase, which is a bit simpler and
more intuitive.

Proof: Assume we’re in the pure phase, and backtracking line search gives
us t = 1.

Fact 1: Since f is m-strongly convex, we know that:

f(x(k))− f(x∗) ≤ 1

2m
∥∇f(x(k)∥22

Proof of Fact 1:

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
∥y − x∥22

Now minimizing over both sides gives:f(x∗) ≥ min
y

f(x) +∇f(x)T (y − x) +
m

2
∥y − x∥22

take gradient:0 = ∇f(x) +m(y − x) ⇒ y = − 1

m
∇f(x) + x ⇒ f(x∗) ≥ f(x)− 1

m
∥∇f(x)∥22 +

1

2m
∥y − x∥22

⇒ f(x∗) ≥ f(x)− 1

2m
∥∇f(x)∥22

⇒ f(x)− f(x∗) ≤ 1

2m
∥∇f(x)∥22

Fact 2: Once we are in the pure phase, letting x+ = x−−(∇2f(x))−1∇f(x):

M

2m2
∥∇f(x+∥22 ≤

(
M

2m2
∥∇f(x)∥22

)2

Lecture 17: Newton’s Method Analysis 17-5

Proof of Fact 2:

∥∇f(x+)∥22 = ∥∇f(x+ v)∥22 where v = −(∇2f(x))−1∇f(x)

= ∥∇f(x+ v)−∇f(x)−∇2f(x)v∥22 since ∇2f(x)v = ∇f(x)

= ∥
∫ 1

0

∇2f(x+ tv)dt−∇2f(x)v∥22

by the fundamental theorem of calculus

=

∫ 1

0

∥∇2f(x+ tv)−∇2f(x)v∥22dt

by triangle inequality

The definition of the operator norm gives us that:

∥∇2f(x+ tv)−∇2f(x)v∥22 ≤ ∥∇2f(x+ tv)−∇2f(x)∥op∥v∥2
≤ Mt∥v∥2∥v∥22 = Mt∥v∥22
By invoking the Lipschitz-ness of the Hessian

Returning to the broader inequality, we have:

∥∇f(x+)∥22 ≤ M∥v∥22
∫ 1

0

tdt

≤ M∥ − (∇2f(x))−1∇f(x)∥22
≤ M∥ − ∥∇2f(x))−1∥2op∥∇f(x)∥22

≤ − M

2m2
∥∇f(x)∥22

Where the last step is by strong convexity and since the inverse of the matrix
and a matrix have reciprocal eigenvalues.

Multiplying both sides by M
2m2 gives:

M

2m2
∥∇f(x+∥22 ≤

(
M

2m2
∥∇f(x)∥22

)2

Fact 3: Also in the pure phase:

f(x(k))− f(x∗) ≤ 2M3

m2

(
1

2

)2k−k0

Lecture 17: Newton’s Method Analysis 17-6

Proof of Fact 3: We’ve established that

M

2m2
∥∇f(x(k+1)∥22 ≤

(
M

2m2
∥∇f(x(k))∥22

)2

Letting the LHS be ak and the RHS be ak−1, we have:

ak ≤ a4k−2

≤ . . .

≤ a2
k−k0

k0

Plugging back in yields:

M

2m2
∥∇f(x(k+1)∥22 ≤

(
M

2m2
∥∇f(x(k0))∥22

)2k−k0

But at k0 we know that ∥∇f(xk0∥22 ≤ η ≤ m2

M
. So:

M

2m2
∥∇f(x(k+1)∥22 ≤

(
1

2

)2k−k0

f(xk)− f(x∗) ≤ 1

2m
∥∇f(xk)∥22

≤ 1

2m
(
2m2

M
)2(

1

2
)2

k−k0+1

≤ 2m3

M2

(
1

2

)2k−k0+1

Unraveling this result, what does it say? To get f(x(k))− f ⋆ ≤ ϵ, we need at
most

f(x(0))− f ⋆

γ
+ log log(ϵ0/ϵ)

iterations, where ϵ0 = 2m3/M2

Lecture 17: Newton’s Method Analysis 17-7

• This is called quadratic convergence. Compare this to linear conver-
gence (which, recall, is what gradient descent achieves under strong
convexity)

• The above result is a local convergence rate, i.e., we are only guar-
anteed quadratic convergence after some number of steps k0, where
k0 ≤ f(x(0))−f⋆

γ

• Somewhat bothersome may be the fact that the above bound depends
on L,m,M , and yet the algorithm itself does not ...

Self-concordance A scale-free analysis is possible for self-concordant func-
tions: on R, a convex function f is called self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)3/2 for all x

and on Rn is called self-concordant if its projection onto every line segment
is so

Theorem (Nesterov and Nemirovskii): Newton’s method with back-
tracking line search requires at most

C(α, β)
(
f(x(0))− f ⋆

)
+ log log(1/ϵ)

iterations to reach f(x(k))−f ⋆ ≤ ϵ, where C(α, β) is a constant that only
depends on α, β

What kind of functions are self-concordant?

• Linear and quadratic functions

• f(x) = −
∑n

i=1 log(xi) on Rn
++

• f(X) = − log(det(X)) on Sn
++

• If g is self-concordant, then so is f(x) = g(Ax+ b)

• In the definition of self-concordance, we can replace factor of 2 by a
general κ > 0

• If g is κ-self-concordant, then we can rescale: f(x) = κ2

4
g(x) is self-

concordant (2-self-concordant)

Lecture 17: Newton’s Method Analysis 17-8

17.1.5 Practicalities

Comparison to first-order methods At a high-level:

• Memory: each iteration of Newton’s method requires O(n2) storage
(n × n Hessian); each gradient iteration requires O(n) storage (n-
dimensional gradient)

• Computation: each Newton iteration requires O(n3) flops (solving a
dense n× n linear system); each gradient iteration requires O(n) flops
(scaling/adding n-dimensional vectors)

• Backtracking: backtracking line search has roughly the same cost, both
use O(n) flops per inner backtracking step

• Conditioning: Newton’s method is not affected by a problem’s condi-
tioning, but gradient descent can seriously degrade

Back to logistic regression example: now x-axis is parametrized in terms of
time taken per iteration

0.00 0.05 0.10 0.15 0.20 0.25

1e
−

13
1e

−
09

1e
−

05
1e

−
01

1e
+

03

Time

f−
fs

ta
r

Gradient descent
Newton's method

Each gradient descent step is O(p), but each Newton step is O(p3)

Sparse, structured problems When the inner linear systems (in Hes-
sian) can be solved efficiently and reliably, Newton’s method can strive

Lecture 17: Newton’s Method Analysis 17-9

For example, if ∇2f(x) is sparse/structured for all x, say banded, then both
memory and computation are O(n) per Newton iteration

What functions admit a structured Hessian? Two examples:

• If g(β) = f(Xβ), then ∇2g(β) = XT∇2f(Xβ)X. Hence if X is a
structured predictor matrix and∇2f is diagonal, then∇2g is structured

• If we seek to minimize f(β) + g(Dβ), where ∇2f is diagonal, g is not
smooth, and D is a structured penalty matrix, then the Lagrange dual
function is −f ∗(−DTu) − g∗(−u). Often ∇2f ∗ will be diagonal (e.g.,
when f(β) =

∑p
i=1 fi(βi)) so the Hessian in dual will be structured

17.1.6 Quasi-Newton methods

If the Hessian is too expensive (or singular), then a quasi-Newton method
can be used to approximate ∇2f(x) with H ≻ 0, and we update according
to

x+ = x− tH−1∇f(x)

• Approximate Hessian H is recomputed at each step. Goal is to make
H−1 cheap to apply (possibly, cheap storage too)

• Convergence is fast: superlinear, but not the same as Newton. Roughly
n steps of quasi-Newton make same progress as one Newton step

• Very wide variety of quasi-Newton methods; common theme is to “pro-
pogate” computation of H across iterations

	Newton's Method
	The Algorithm
	Newton's method interpretation
	Damped Newton's method
	Analysis
	Practicalities
	Quasi-Newton methods

