
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 18: KKT Conditions & Log-Barrier Analysis
Instructor:1 Matt Gormley November 1, 2023

18.1 Newton’s Method

Sparse, structured problems When the inner linear systems (in Hes-
sian) can be solved efficiently and reliably, Newton’s method can strive

For example, if ∇2f(x) is sparse/structured for all x, say banded, then both
memory and computation are O(n) per Newton iteration

What functions admit a structured Hessian? Two examples:

• If g(β) = f(Xβ), then ∇2g(β) = XT∇2f(Xβ)X. Hence if X is a
structured predictor matrix and∇2f is diagonal, then∇2g is structured

• If we seek to minimize f(β) + g(Dβ), where ∇2f is diagonal, g is not
smooth, and D is a structured penalty matrix, then the Lagrange dual
function is −f ∗(−DTu) − g∗(−u). Often ∇2f ∗ will be diagonal (e.g.,
when f(β) =

∑p
i=1 fi(βi)) so the Hessian in dual will be structured

18.1.1 Quasi-Newton methods

If the Hessian is too expensive (or singular), then a quasi-Newton method
can be used to approximate ∇2f(x) with H ≻ 0, and we update according
to

x+ = x− tH−1∇f(x)

• Approximate Hessian H is recomputed at each step. Goal is to make
H−1 cheap to apply (possibly, cheap storage too)

• Convergence is fast: superlinear, but not the same as Newton. Roughly
n steps of quasi-Newton make same progress as one Newton step

1These notes were originally written by Ryan Tibshirani for 10-725 Fall 2019 (original
version: here) and were edited and adapted for 10-425/625.
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https://www.stat.cmu.edu/~ryantibs/convexopt/
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• Very wide variety of quasi-Newton methods; common theme is to “pro-
pogate” computation of H across iterations

18.2 Strong Duality

We made the (simple) observation that p∗ ≥ d∗, i.e. that weak duality always
holds. In cases where p∗ = d∗ we say that strong duality holds. We will refer
to p∗ − d∗ as the duality gap.

Duality is most useful when strong duality holds, and we will develop several
insightful consequences of strong duality. Before we do this, let us explore
when strong duality holds.

18.2.1 (Relaxed) Slater’s Condition

The basic punchline is roughly that – strong duality holds for most convex
problems (except a few pathological ones), and rarely holds for non-convex
problems.

To be a bit more precise we’ll describe a popular set of conditions which
are sufficient for strong duality to hold for a convex optimization problem.
The conditions we describe are called weak/relaxed Slater’s conditions. (The
broader area under which results of this form fall are called either “constraint
qualifications” in the special case of Lagrangians, or minimax theorems more
generally.)

Suppose we’re again interested in a problem of the form:

min
x

f(x)

subject to hi(x) ≤ 0 i ∈ {1, . . . ,m}
ℓj(x) = 0, j ∈ {1, . . . , r}.

We’ll denote byD the (implicit) domain of the problem, i.e. where all the con-
straint and objective functions are finite. Some of our inequality constraints
hi may be affine, without loss of generality we’ll assume that we re-order the
constraints so that for some k ∈ {0, . . . ,m} the constraints h1, . . . , hk are
affine.
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Slater’s Theorem: Suppose that there exists a point x0 ∈ relative int(D)
such that,

ℓj(x0) = 0, j ∈ {1, . . . , r}
hi(x0) ≤ 0, i ∈ {1, . . . , k}
hi(x0) < 0, i ∈ {k + 1, . . . ,m},

then strong duality holds, i.e. p∗ = d∗.

In words, Slater’s condition simply requires that there is some feasible point
x0, which is strictly feasible for the non-affine inequality constraints. This is
usually a rather mild assumption (roughly it is saying that the feasible region
must have an interior point). It is worth noting that this is not requiring this
property to hold for the optimal solution x∗.

An important implication of Slater’s condition is the following LP strong
duality theorem (in an LP all constraints are affine, so Slater’s conditions
simply reduces to checking feasibility):

LP Strong Duality: If in an LP, either the primal or dual is feasible then
strong duality holds, i.e. p∗ = d∗.

Some people would add to this a few more cases which are covered by weak
duality to conclude the following slightly more general LP strong duality
theorem:

1. If both are infeasible, then strong duality fails (but weak duality of
course, always holds).

2. If either primal or dual is feasible, then strong duality holds.

3. If the dual is unbounded, then the primal must be infeasible and strong
duality holds.

4. If the primal is unbounded, then the dual must be infeasible and strong
duality holds.

QP Strong Duality: In a similar vein, for a QP strong duality holds if
either the primal or dual is feasible (once again, all the constraints are affine
so Slater’s conditions just boil down to checking feasibility).
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18.2.2 Minimax Formulation

Our treatment of duality seems so far to be a bit asymmetric, i.e. we often
treated the primal as special (given to us, and the main object of interest) and
the dual as some auxiliary program we derived. However, they are both in
fact completely symmetric objects that can be derived from the Lagrangian.

Suppose that we have a Lagrangian, for v ≥ 0,

L(x, u, v) := f(x) +
r∑

j=1

ujℓj(x) +
m∑
i=1

vjhj(x).

We have already seen how to derive the dual from the Lagrangian. Then the
following observation shows that we can always derive the primal from the
Lagrangian. If you’re not familiar with inf and sup you can replace them in
your parsing by min and max. Observe that,

sup
u,v≥0

L(x, u, v) =

{
f(x) if x is feasible

∞ otherwise.

This is easy to check – if x violates any of the constraints, then if we set the
corresponding u or v to → ∞ we obtain that the supremum is ∞. On the
other hand when x satisfies all the constraints the supremum is achieved by
setting u, v = 0, in which case supu,v≥0 L(x, u, v) = f(x).

This in turn means that we can write the primal optimal value in terms of
the Lagrangian:

p∗ = inf
x

sup
u,v≥0

L(x, u, v).

We have already noted that the dual optimal value is simply:

d∗ = sup
u,v≥0

inf
x
L(x, u, v).

With these definitions in place we can see that weak duality is simply the
statement that:

inf
x

sup
u,v≥0

L(x, u, v) ≥ sup
u,v≥0

inf
x
L(x, u, v).
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This statement is of course always true (i.e. does not require any conditions
on L whatsoever). In game-theoretic language, this is the observation that
in a two-player, zero-sum game the first player is always at a disadvantage
(the second player observes the first players’ move and then gets to choose
the best response).

On the other strong duality is the (non-trivial) statement that,

inf
x

sup
u,v≥0

L(x, u, v) = sup
u,v≥0

inf
x
L(x, u, v).

When this property holds there is no longer any advantage to going second.
Theorems that give conditions under which this equality holds are called
minimax theorems. Slater’s conditions yield a minimax theorem in the re-
stricted type of Lagrangian game that we were interested in but there are
many other minimax theorems that hold in different settings.

An important concept in this setting is that of a saddle point (we have
encountered saddle points in pure minimization problems before, now we’re
encountering them in min-max problems). A point (x∗, (u∗, v∗)) is a saddle
point if we have:

L(x, u∗, v∗) ≥ L(x∗, u∗, v∗) ≥ L(x∗, u, v) for any (x, u, v) ∈ D.

The reason they’re an important concept is the following (not difficult to
prove) fact: (x∗, (u∗, v∗)) is a saddle point if and only if strong duality holds,
and in this case,

x∗ = arg inf
x

sup
u,v≥0

L(x, u, v)

(u∗, v∗) = arg sup
u,v≥0

inf
x
L(x, u, v).

In words, any saddle point gives us a pair of primal, dual optimal solutions,
and conversely any primal-dual optimal pair defines a saddle point.

18.3 KKT Conditions and Optimality

We have already at some point discussed first-order optimality conditions for
general convex programs. These are extremely useful (and we already have
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used them to reason about properties of projections and proximal operators
for instance), but they are not always very transparent to use since we (at
that time) didn’t know much about the convex set C for minx∈C f(x).

It will turn out for the types of inequality, equality constrained optimization
problems we are discussing in this lecture – strong duality will yield some
natural first-order optimality conditions which are often useful.

We’ll assume throughout this section that our constraint and objective func-
tions are differentiable (things will carry over in the convex case if you replace
gradients by subgradients). We have our usual convex optimization problem:

min
x

f(x)

subject to hi(x) ≤ 0 i ∈ {1, . . . ,m}
ℓj(x) = 0, j ∈ {1, . . . , r}.

Here f, hi are convex, and ℓj are affine. Given a candidate pair of primal-
dual points (x̂, û, v̂), we will say they satisfy the Karush-Kuhn-Tucker (KKT)
conditions if:

hi(x̂) ≤ 0, i ∈ {1, . . . ,m} (18.1)

ℓj(x̂) = 0, j ∈ {1, . . . , r} (18.2)

v̂ ≥ 0, (18.3)

v̂ihi(x̂) = 0, i ∈ {1, . . . ,m} (18.4)

∇f(x̂) +
m∑
i=1

v̂i∇hi(x̂) +
r∑

j=1

ûi∇ℓj(x̂) = 0. (18.5)

The two conditions (18.1),(18.2) are called primal feasibility, the condition (18.3)
is dual feasibility, the condition (18.4) is complementary slackness, and (18.5)
is stationarity. We’ll refer to points (x, u, v) which satisfy these conditions
as KKT points.

The KKT conditions characterize optimal solutions to the primal and dual
in the following sense:

1. A sufficient condition for x∗ to be a primal optimal solution, is that
there exists a (u∗, v∗) such that (x∗, u∗, v∗) is a KKT point. Similarly,
a sufficient condition for (u∗, v∗) to be a dual optimal solution is that
there exists an x∗ such that (x∗, u∗, v∗) is a KKT point. Equivalently,
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any KKT point gives an optimal solution to the primal and dual prob-
lems.

2. When strong duality holds, this is also a necessary condition, i.e. (x∗, u∗, v∗)
are optimal primal-dual solutions if and only if they are KKT points.

The proofs of these claims are fairly simple, but insightful so we’ll discuss
them briefly.

18.3.1 Sufficiency

Suppose that (x̂, û, v̂) satisfy the KKT conditions. The condition (18.5) is
equivalent to the fact that:

∇xL(x̂, û, v̂) = 0,

and since the functions f, h, ℓ are convex this implies that x̂ is a minimizer
of L(x, û, v̂), i.e.

L(x̂, û, v̂) ≤ L(x, û, v̂).

This in turn means that, g(û, v̂) = L(x̂, û, v̂). We also observe that,

g(û, v̂) = L(x̂, û, v̂) = f(x̂),

since by primal feasibility and complementary slackness the other terms in
the Lagrangian are 0. We already know (by weak duality), that for any
feasible solutions (x, u, v) we have that,

g(u, v) ≤ f(x),

so we conclude that f(x̂) = g(û, v̂) ≤ f(x) for any feasible x, i.e. x̂ is primal
optimal. Similarly, g(u, v) ≤ f(x̂) = g(û, v̂) for any feasibly (u, v), i.e. (û, v̂)
is dual optimal.

Note that, along the way we have shown that if there is any KKT point
(x̂, û, v̂) then strong duality holds.

18.3.2 Necessity

Suppose that strong duality holds, and we are given a pair of (feasible) opti-
mal solutions (x∗, u∗, v∗). We already know that they must satisfy (18.1),(18.2),(18.3)
since the solutions are feasible.



Lecture 18: KKT Conditions & Log-Barrier Analysis 18-8

We also know that,

f(x∗) = g(u∗, v∗)

= inf
x

[
f(x) +

r∑
j=1

u∗
jℓj(x) +

m∑
i=1

v∗jhj(x)

]

≤ f(x∗) +
r∑

j=1

u∗
jℓj(x

∗) +
m∑
i=1

v∗jhj(x
∗)

= f(x∗) +
m∑
i=1

v∗jhj(x
∗)

≤ f(x∗).

This means that all the inequalities above must in fact be equalities. This in
turn means that

∑m
i=1 v

∗
jhj(x

∗) = 0, but since each term in the sum is non-
positive the only way the sum can be zero is if every term is 0, i.e. that (18.4)
holds.

We also observe that, f(x∗) = g(u∗, v∗) = infx L(x, u
∗, v∗), i.e. x∗ is a mini-

mizer of L(x, u∗, v∗). Since this latter function is convex and differentiable,
we know that ∇xL(x

∗, u∗, v∗) = 0 which is precisely our last remaining KKT
condition (18.5).

We have thus argued that any optimal solution x∗ to the primal and (u∗, v∗)
to the dual satisfies the KKT conditions.

18.3.3 KKT Without Convexity

For a general program of the form we described above (without convexity
of f , hi say), the (subgradient) KKT conditions are still sufficient (always)
and necessary (when strong duality holds). First, we’ll need to modify the
stationarity KKT condition to be:

0 ∈ ∂f(x̂) +
r∑

j=1

ûj∂ℓj(x̂) +
m∑
i=1

v̂j∂hj(x̂).

This is a subtle but extremely important difference. Notice that, even when
the functions are differentiable this KKT condition is not the same as before
(since we’re now talking about potentially non-convex functions).
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An important thing to notice is that for an unconstrained problem x∗ mini-
mizes some function f if and only if 0 ∈ ∂f(x∗) (we showed this before when
we talked about sub-gradient optimality conditions) and this doesn’t require
convexity.

Necessity (under strong duality) and Sufficiency: The proofs of ne-
cessity and sufficiency above go through unchanged. The only reason we used
convexity before was in reasoning about stationarity, i.e. to say if x̂ mini-
mizes some unconstrained convex, differentiable function, then the gradient
at x̂ must be 0. Now, we simply replace this by the subgradient stationarity
condition above, and all other steps remain the same.

18.4 Support Vector Machines

Suppose given labeled data {(x1, y1), . . . , (xn, yn)} where yi ∈ {−1,+1} and
our goal is to learn a linear classifier. One way to do this is by trying to
maximize the margin of the classifier. In the case when the data is linearly
separable the margin of a (perfect) classifier is the minimum distance of any
point to the decision boundary. In case the data is not linearly separable
we allow points to violate the margin (by introducing slack variables), but
penalize this violation. This results in the following optimization problem:

min
β,β0,ξ

1

2
∥β∥22 + C

n∑
i=1

ξi,

subject to ξi ≥ 0, for i ∈ {1, . . . , n}
yi(x

T
i β + β0) ≥ 1− ξi, for i ∈ {1, . . . , n}.

This is a QP (and is clearly feasible) so via the weak Slater’s conditions we
know that strong duality holds. It is worth noting that have two constraints
on ξi – i.e. that ξi ≥ 0, ξi ≥ 1− yi(x

T
i β + β0), and we get penalized for large

values of ξi. Consequently, we can write the SVM optimization equivalently
in a reduced form as:

min
β,β0

1

2
∥β∥22 + C

n∑
i=1

min{0, 1− yi(x
T
i β + β0)},

which can be viewed as a penalized empirical risk where the penalty is the
ℓ22-norm of β and the risk corresponds to the average hinge loss.
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Returning to our original SVM formulation suppose we introduce dual vari-
ables v, w ≥ 0 for the inequality constraints, then we can write the La-
grangian:

L(β, β0, ξ, v, w) =
1

2
∥β∥22 +

n∑
i=1

[
Cξi − viξi + wi(1− ξi − yi(x

T
i β + β0)

]
.

We can minimize this over ξ and β, β0 to see that we must satisfy the following
conditions:

β =
n∑

i=1

wiyixi,

C − vi − wi = 0
n∑

i=1

wiyi = 0.

Making these substitutions yields the dual function:

g(v, w) =
1

2

(
n∑

i=1

wiyixi

)T ( n∑
i=1

wiyixi

)
+

n∑
i=1

wi(1− yix
T
i (

n∑
i=1

wiyixi)).

This yields the dual SVM program:

max
v≥0,w≥0

g(v, w),

subject to C − vi − wi = 0,
n∑

i=1

wiyi = 0.

which can be (after eliminating the v variables) can be written as:

max
w

n∑
i=1

wi −
1

2

(
n∑

i=1

wiyixi

)T ( n∑
i=1

wiyixi

)
subject to 0 ≤ wi ≤ C,

n∑
i=1

wiyi = 0.
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The SVM dual is also a QP so it is perhaps not immediately obvious why
this was a useful sequence of steps to carry out. However, the dual is the
entry point to the world of RKHS/kernel machines. We notice that the dual
program does not require the actual features xi to be given but rather only
requires the inner products between pairs of features i.e. xT

i xj. This in turn
suggests we could (implicitly) fit a linear classifier in a transformed feature
space ϕ(x) so long as we know how to evaluate inner products ϕ(xi)

Tϕ(xj)
(since we could plug in these values and solve the dual). This is the so-called
kernel trick.

Another feature of the dual will be useful in this transformation, which is
that given a dual solution w, we can find the primal solution:

β =
n∑

i=1

wiyixi.

This idea carries through to the kernelized case, where we observe that to
evaluate the classifier at a point x we simply need βTx which in turn can be
expressed in terms of the inner products between ϕ(x) and the training data
ϕ(xi). To find β0 we need to understand the KKT conditions a bit better.

Furthermore, in this case, the KKT conditions are quite insightful. If we
returned to the non-reduced dual, we know that by complementary slackness
we must have:

viξi = 0,

wi(1− ξi − yi(x
T
i β + β0)) = 0,

but we also have the constraint that vi = (C − wi). This yields some facts:

1. If yi(x
T
i β + β0) > 1 then we have already observed that ξi = 0, so it

must be the case that wi = 0.

2. If yi(x
T
i β + β0) < 1 then we know that ξi > 0, so vi = 0, i.e. wi = C.

3. If wi = 0, then we know that ξi = 0, so we know that yi(x
T
i β+β0) ≥ 1.

4. If 0 < wi < C then we know that ξi = 0, and therefore that yi(x
T
i β +

β0) = 1.

The points for which wi > 0 are called support vectors. Now, finally, if we
can find any point for which 0 < wi < C then we know that, we can write
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β0 = 1/yi − xT
i β, (i.e. we can use such points to find β0). It turns out that

if you cannot find such a point the SVM optimization is degenerate, and
the optimal β = 0 and β0 is either +1 or −1 depending on which class is a
majority in the training data.
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