
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 19: Proximal Gradient Method
Instructor:1 Matt Gormley November 13, 2023

19.1 Proximal Gradient Descent

The particular problem class we’ll focus on now will be: we want to minimize
an unconstrained function f which can be written as the sum of a “nice”,
convex, function g and a potentially non-smooth convex function h, i.e.

min
x∈Rd

g(x) + h(x).

The prox. GD algorithm alternates the following steps:

1. We compute yt+1 = xt − ηt∇g(xt).

2. We then compute our next iterate by solving:

xt+1 = arg min
x∈Rd

[
h(x) +

1

2ηt
∥x− yt+1∥22

]
.

(Note that at this point, the only other solution we have for such a problem is
the subgradient method, with O(1/

√
k) convergence rate. However, we’ll see

this proximal gradient descent method can achieve a O(1/k) rate—with the
usual assumptions. Relatedly, recall that the projected gradient algorithm
on problems of the form minx∈C f(x) achieved rates of convergence that were
inhereited from the unconstrained optimization of f .)

19.1.1 The Proximal Operator

For a convex function f the proximal operator is defined to be:

proxf (v) = argmin
x

(
f(x) +

1

2
∥x− v∥22

)
.

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.

19-1

https://www.stat.cmu.edu/~siva/teaching/725/


Lecture 19: Proximal Gradient Method 19-2

One can interpret this as some type of generalized projection operation, i.e.
if you take a point v outside the domain of f the prox operator will return a
point which is in the domain close to the original point (where the function
f is small). If you are inside the domain then prox operator will move you
towards the minimum of f , and if you’re at the minimizer of f you will stay
there.

More directly, if f(x) = IC(x) is a convex indicator function, then proxf (v)
simply projects v onto C.

With this notation, one can write the prox GD algorithm as:

1. We compute yt+1 = xt − ηt∇g(xt).

2. We then compute our next iterate by solving:

xt+1 = proxηth(y
t+1).

19.1.2 Step Sizes

As with any of the first-order algorithms we have studied so far an important
practical choice will be that of the step-size. We’ll as usual see some theo-
retical choices in the future. In practice, often backtracking is used. Usually
it is used to ensure sufficient decrease in the smooth part of the objective.
Describing the precise backtracking line search will be a bit easier once we’ve
introduced the so-called gradient map so we’ll return to it later.

19.1.3 An Example – ISTA

There are many nice examples of proximal algorithms that are popular in
practice. Part of the revival of interest in prox GD came from its application
to solving the LASSO – in this case the algorithm goes by the name Iterative
Shrinkage Thresholding Algorithm (ISTA).

If we want to use the prox GD algorithm to solve the LASSO:

min
x∈Rd

1

2
∥Ax− b∥22 + λ∥x∥1,

we would:

1. Compute yt+1 = xt − ηtA
T (Axt − b).



Lecture 19: Proximal Gradient Method 19-3

2. Then we would need to solve the prox problem:

xt+1 = arg min
x∈Rd

1

2ηt
∥x− yt+1∥22 + λ∥x∥1.

Fortunately, we seen the solution to this problem in closed form. We
set

xt+1 = Sληt(y
t+1),

where Sλ is the soft-thresholding operation we have seen before.

Definition 19.1. The soft-thresholding operation for a scalar yi, and λ > 0,

Sλ(yi) =


yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ

yi + λ if yi < −λ.

This algorithm is very natural – we simply take a gradient step (ignoring
the non-smooth part) and then soft-threshold the iterates (to account for the
non-smooth part). It should however be pretty mysterious as to why this
algorithm works (is the LASSO solution even a fixed point?).

19.1.4 Motivating Prox GD

There are many different ways to motivate the proximal gradient descent
algorithm:

1. As a generalization of projected GD: In projected GD, we wanted
to solve the constrained problem:

min
x∈C

f(x),

where f was a differentiable function which could be written as:

min
x∈Rd

f(x) + IC(x),

which is exactly of the form “nice function” + non-smooth function.
Minimizing this with the prox GD algorithm will simply recover the
projected GD algorithm (because the prox operation is simply a pro-
jection). So one can view prox GD as a natural extension of projected
GD to other types of smooth, non-smooth sums.



Lecture 19: Proximal Gradient Method 19-4

2. The Local Approximation Viewpoint: Another viewpoint on the
proximal GD algorithm is that in order to minimize a sum f = g + h
one can locally approximate just the smooth part and carry out the
minimization, i.e. we can attempt to minimize:

xt+1 = arg min
x∈Rd

[
g(xt) +∇g(xt)T (x− xt) +

1

2ηt
∥x− xt∥22 + h(x)

]
.

In the above expression we have approximated the smooth part (by a
linear approximation) and left the non-smooth part untouched.

Now, it is easy to see that this is equivalent to writing:

xt+1 = arg min
x∈Rd

[
1

2ηt
∥x− (xt − ηt∇g(xt))∥22 + h(x)

]
= proxηh(x

t − ηt∇g(xt)).

This is precisely the prox GD algorithm.

3. Connection to Expectation-Maximization (EM)/Majorization-
Minimization (MM) algorithms: If we have a β-smooth function
g, and we choose ηt ≤ 1/β then we know that,

g(x) ≤ g(xt) +∇g(xt)T (x− xt) +
1

2ηt
∥x− xt∥22.

As a consequence, our prox GD algorithm in this case is simply finding
a “nice” convex upper bound on our function, which is tight at x = xt,
and minimizing this upper bound. Algorithms that do this are called
MM algorithms, and have lots of nice properties. The EM algorithm is
a special case.

19.1.5 Some Special Cases

In the prox algorithm:

1. When h = 0 this is just regular GD.

2. When h = IC this is just projected GD (which we have some under-
standing of).



Lecture 19: Proximal Gradient Method 19-5

3. When g = 0 this is a different algorithm (that pre-dates prox GD)
known as proximal minimization, where to minimize some function f ,
we regularize it a bit and minimize it iteratively, i.e. we solve

xt+1 = proxηf (x
t).

This iteration will converge to a minimizer of f under weak conditions
(and is sometimes easier to solve than the original problem because of
the regularization).

Now that we’ve derived the algorithm and understood some simple special
cases, it remains to really make sense of it.

Our first goal for today will be to try to better understand the prox. algo-
rithm we defined in the previous lecture. Then we will turn our attention to
another popular example of proximal GD.

19.2 Some Properties of the Proximal Oper-

ator

Recall, for a function h,

proxh(x) = argmin
u

1

2
∥x− u∥22 + h(u).

19.2.1 The proximal operator is a contraction

The first fact that we will show is that (like a projection) the prox operation
is a contraction, i.e.

Lemma 19.2. For a convex function h,

∥proxh(x)− proxh(y)∥2 ≤ ∥x− y∥2.

Proof: We’ll prove the stronger claim that,

∥proxh(x)− proxh(y)∥22 ≤ ⟨x− y, proxh(x)− proxh(y)⟩,

from which the original claim follows (by applying the Cauchy-Schwarz in-
equality to the RHS).



Lecture 19: Proximal Gradient Method 19-6

To see this we simply use subgradient optimality conditions. Let u = proxh(x),
v = proxh(y), then we know that by subgradient optimality conditions,

0 ∈ u− x+ ∂h(u) ⇒ x− u ∈ ∂h(u),

0 ∈ v − y + ∂h(v) ⇒ y − v ∈ ∂h(v).

By monotonicity of the gradient of h we know that for any elements (a, b) of
the subdifferential of h at u, v,

⟨a− b, u− v⟩ ≥ 0.

Applying this to the two vectors above we see that,

⟨x− u− y + v, u− v⟩ ≥ 0,

from which the stronger claim (and hence the lemma) follows.

19.2.2 Gradient Mapping

Another important property of the prox. update is that it only has one fixed
point, i.e. only if we’re already at an optimal point will the prox. algorithm
stop. Before we can show this, we’ll need to define an important quantity
which is the gradient mapping. We’d like to analyze prox. GD but it differs
from GD in that it’s a bit difficult to make sense of the prox. GD updates.
Define,

Gη(x) =
1

η

[
x− proxηh(x− η∇g(x))

]
.

This might seem quite unintuitive a quantity (it is), but it allows us to write,

xt+1 = xt − ηtGηt(x
t).

This in turn makes prox. GD updates look a bit more familiar. Provided
that we can get some handle on the gradient mapping we might then be able
to analyze prox. GD in a similar fashion to how we analyzed GD.

Now, lets use the gradient mapping to argue that the only prox. GD fixed
points are optimal solutions to our original program.



Lecture 19: Proximal Gradient Method 19-7

Lemma 19.3.

Gη(x
∗) = 0 ⇐⇒ 0 ∈ ∇g(x∗) + ∂h(x∗)

Proof: For any point x̃, we know that,

Gη(x̃) =
1

η

[
x̃− proxηh(x̃− η∇g(x̃))

]
,

and this in turn (by optimality conditions for prox) means that,

x̃− η∇g(x̃)− x̃+ ηGη(x̃) ∈ η∂h(x̃− ηGη(x̃)),

i.e. for any point x̃ we must have that,

Gη(x̃) ∈ ∇g(x̃) + ∂h(x̃− ηGη(x̃)). (19.1)

It is worth thinking about this equation for a bit and noticing how it differs
from a usual sub-gradient, i.e. vx̃ would be a valid subgradient if it was in
the collection ∇g(x̃) + ∂h(x̃), but the proximal gradient mapping satisfies a
slightly different condition.

Now we see that if Gη(x
∗) = 0 for some x∗ then x∗ must satisfy,

0 ∈ ∇g(x∗) + ∂h(x∗).

Conversely, if 0 ∈ ∇g(x∗) + ∂h(x∗), then we have that,

x∗ − η∇g(x∗)− x∗ ∈ η∂h(x∗),

which in turn means that,

x∗ = proxηh(x
∗ − η∇g(x∗)).

This final expression yields that, Gη(x
∗) = 0 as desired.

19.3 Convergence Analysis

19.3.1 Main Descent Lemma

Our eventual goal will be to analyze the prox algorithm when g is β-smooth,
and h is convex The main technical hurdle will be to prove a descent lemma
which works when we replace gradients by generalized gradients.



Lecture 19: Proximal Gradient Method 19-8

Lemma 19.4. For any η ≤ 1/β, and any z

f(x− ηGη(x)) ≤ f(z) +Gη(x)
T (x− z)− η

2
∥Gη(x)∥22.

Once we prove this lemma the analysis will mirror the smooth case, but
notice that this is a very non-obvious statement since f is not smooth, and
since Gη is not a gradient map (or even a valid subgradient).

It is a generalization of the descent lemma. If we plug in z = x, then we
recover the more familiar expression:

f(x− ηGη(x)) ≤ f(x)− η

2
∥Gη(x)∥22.

This justifies referring to this algorithm as a descent algorithm (at least for
appropriate step-size choices the function value reduces in each iteration).

Proof: We begin by observing,

f(x− ηGη(x)) = g(x− ηGη(x)) + h(x− ηGη(x))

≤ g(x)− η∇g(x)TGη(x) +
η2β

2
∥Gη(x)∥22 + h(x− ηGη(x))

≤ g(z) +∇g(x)T (x− z)− η∇g(x)TGη(x) +
η2β

2
∥Gη(x)∥22 + h(x− ηGη(x))

just by using smoothness on the β-smooth function h. Now, just by convexity
of h we know that,

h(x− ηGη(x)) ≤ h(z)− θT (z − x+ ηGη(x)),

where θ is any element of ∂h(x−ηGη(x)). In (19.1) we showed that, Gη(x)−
∇g(x) ∈ h(x− ηGη(x)), so we obtain the bound,

h(x− ηGη(x)) ≤ h(z)− η∥Gη(x)∥22 + η∇g(x)TGη(x)− (Gη(x)−∇g(x))T (z − x).

Putting the pieces together we obtain the desired claim.

19.3.2 Analyzing the Prox. Algorithm

With the descent lemma in place its straightforward to analyze prox. GD
when applied to β-smooth g (and convex h).



Lecture 19: Proximal Gradient Method 19-9

Theorem 19.5. For β-smooth g, convex h the prox. GD algorithm with
step-size η = 1/β achieves the following guarantee:

f(xk)− f(x∗) ≤ β∥x0 − x∗∥22
2k

.

Proof: As usual we begin with the familiar manipulations,

∥xt+1 − x∗∥22 = ∥xt − x∗∥22 + 2η
(η
2
∥Gη(x

t)∥22 − (xt − x∗)TGη(x
t)
)
.

Our lemma (applied with z = x∗) gives an upper bound on the last term,
which in turn yields:

∥xt+1 − x∗∥22 ≤ ∥xt − x∗∥22 + 2η(f(x∗)− f(xt+1)).

Re-arranging and telescoping we obtain the final result.

What should be surprising is that we’ve attained a 1/k rate of convergence
for a class of non-smooth functions (i.e. f is certainly not smooth). As always
though, we’re exploiting a very particular type of structure (that arises often
in regularized loss minimization problems). We also no longer operate in the
first-order model (and are not bound by the oracle lower bounds discussed
earlier).

19.3.3 Descent Without Smoothness

For some more intuition about why the proximal algorithm is so powerful –
consider the case when g = 0, i.e. we’re just doing proximal minimization
of a potentially non-smooth function h. Since the function h is not smooth,
we could apply the subgradient method, but the crucial observation we be-
laboured was that an arbitrary subgradient would in general not be a descent
direction, and we could never hope to prove an analogue of our “main descent
lemma” (which we proved for GD under smoothness).

Now, lets try to understand the proximal minimization steps (this is really
a special case of the facts we proved above setting g = 0 but the magic is
much clearer). We simply iterate, for any fixed η > 0,

xt+1 = proxηh(x
t) := argmin

x

1

2
∥x− xt∥22 + ηh(x).



Lecture 19: Proximal Gradient Method 19-10

Of course, we could take η very large, and this would converge to a minimizer
in one step (but that problem is as hard to solve as the minimization of h
directly). In practice, one might hope taking a smaller value of η might yield
easier to solve sub-problems which still converge to a minimizer of h.

We define the gradient mapping Gη(x) as before (though its expression is a
bit simpler):

Gη(x) =
1

η

(
x− proxηh(x)

)
.

Lemma 19.6 (Descent Without Smoothness). For h convex, we have the
following guarantees,

h(xt+1) ≤ h(xt)− η∥Gη(x
t)∥22,

h(xt+1) ≤ h(x∗)− η∥Gη(x
t)∥22 +Gη(x

t)T (xt − x∗).

It is worth appreciating this result, since it highlights the key idea of the
prox. method. Without any smoothness assumptions whatsoever we obtain
a descent lemma. The key caveat being that it’s no longer an “explicit” step,
rather we solve a minimization for each step (taking a so-called “implicit”
step).

Proof: We know that for any z, any u ∈ ∂h(xt+1),

h(xt+1) ≤ h(z)− ηuT (z − xt+1).

In our setting we know that, Gη(x
t) ∈ ∂h(xt+1). Taking z = xt we recover

the first claim, and taking z = x∗ we recover the second claim.

Theorem 19.7. After k iterations the proximal method, for convex h, achieves
the guarantee:

h(xk)− h(x∗) ≤ ∥x0 − x∗∥22
2ηk

.

Proof: As usual,

∥xt+1 − x∗∥22 = ∥xt − x∗∥22 + η2∥Gη(x
t)∥22 − 2ηGη(x

t)T (xt − x∗)

≤ ∥xt − x∗∥22 + 2η(h(xt+1)− h(x∗)),



Lecture 19: Proximal Gradient Method 19-11

just by applying the second claim of the descent lemma. Re-arranging and
summing we obtain that,

h(xk)− h(x∗) ≤ ∥x0 − x∗∥22
2ηk

.

19.4 Another example – Matrix Completion

Another nice example of the proximal GD algorithm comes from the problem
of matrix completion. In matrix completion, we observe some subset of
indices of a matrix M∗ (possibly with some noise), and we would like to “fill
in” the matrix. For some subset of indices I, we observe {Yij : (i, j) ∈ I}.

Of course there are many possible ways to do this, and a typical assumption
is that M∗ has low rank, and so we’d like to find a matrix that is close to
Y on the observed indices but has small rank. The rank of a matrix is a
non-convex function, and so we’ll instead choose to use a convex relaxation
of the rank, which is called the trace norm or nuclear norm.

For a matrix M ∈ Rn×d if we write its SVD as M = UΣV T then the nuclear
norm is simply ∥M∥tr =

∑d
i=1 σi(M), i.e. the sum of its singular values.

With all of this background, we’d like to minimize the following objective:

min
M

∑
(i,j)∈I

(Yij −Mij)
2 + λ∥M∥tr.

This is a convex objective, but just like the LASSO the regularizer is not
smooth.

We can still hope for a fast (at least compared to the subgradient method)
algorithm if we can compute the proximal operator corresponding to the
regularizer. You will show in your HW that the program,

min
M

1

2
∥Y −M∥2F + λ∥M∥tr,

has a closed form solution. The optimal M comes from soft-thresholding the
singular values of Y , i.e. proxλh(Y ) = UΣλV

T , where Y = UΣV T is the SVD



Lecture 19: Proximal Gradient Method 19-12

of Y and Σλ = max{0,Σ − λ} which just subtracts λ from every singular
value of Y (and stops if it hits 0).

Now, we have a simple proximal GD algorithm to optimize our original ob-
jective:

1. We compute Zt+1 = X t− η(X t−Y )◦Ω, where Ωij = 1 if (i, j) ∈ I and
0 otherwise.

2. We then compute X t+1 = proxλh(Z
t+1).

You can take the step-size η = 1 since the objective is 1-smooth, and then
this algorithm is known as soft-impute and is one of the faster ways to solve
the matrix completion problem.


	Proximal Gradient Descent
	The Proximal Operator
	Step Sizes
	An Example – ISTA
	Motivating Prox GD
	Some Special Cases

	Some Properties of the Proximal Operator
	The proximal operator is a contraction
	Gradient Mapping

	Convergence Analysis
	Main Descent Lemma
	Analyzing the Prox. Algorithm
	Descent Without Smoothness

	Another example – Matrix Completion

