
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 2: Overview of Opt. / Convex Sets
Instructor:1 Matt Gormley August 30, 2023

2.1 Optimization of Optimization (continued)

2.1.1 Convex Optimization Problems – Standard Form

For now it is worth noting (and re-visiting once the definitions are in place),
that the explicit constraints define a convex set, and their intersection with
the domain D is also a convex set. If we denote this convex set C then our
convex optimization problem can be equivalently, succinctly described as:

min
x∈C

f0(x),

i.e. a convex optimization problem is simply the problem of minimizing a
convex function over a convex set.

2.1.2 The Key Feature of Convex Optimization Prob-
lems

The most important structural feature of convex optimization problems is
that every local minima is a global minima. This in turn makes local search
algorithms effective for convex optimization.

We’ll need to define some things in order to make sense of this claim. First,
lets briefly define convex sets and functions:

Definition 2.1 (Convex Set). A set C is convex, if for every x1, x2 ∈ C
and 0 ≤ θ ≤ 1 we have that, θx1 + (1− θ)x2 ∈ C.

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.

2-1

https://www.stat.cmu.edu/~siva/teaching/725/
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Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Definition 2.2 (Convex Function). A function f : Rd 7→ R is a convex
function if,

1. dom(f) is a convex set,

2. for every x, y ∈ dom(f), and 0 ≤ θ ≤ 1 we have that,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.Definition 2.3 (Nonconvex Function). A function f is said to be non-

convex if it is not convex.

Next, we’ll need to understand what local optima are:

Definition 2.4 (Local & Global Optima). A point x is a local optima, if x
is feasible, and minimizes f0 in a local neighborhood, i.e. for some ρ > 0,

f0(x) ≤ f0(y),

for all y which are feasible, and ∥x− y∥2 ≤ ρ. A point x∗ is a global optima,
if x∗ is feasible and

f0(x) ≤ f0(y),

for all y which are feasible.

Theorem 2.5. For a convex optimization problem any local optima is a
global optima.
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Proof: Let x be a local optima. Suppose for contradiction of global opti-
mality, that there is some x∗ which is feasible, and has the property that,

f0(x
∗) < f0(x).

Now, lets examine a new point,

x0 =

(
1− ρ

∥x− x∗∥2

)
x+

ρ

∥x− x∗∥2
x∗.

Notice that,

1. x0 is feasible, since it is a convex combination of two feasible points x
and x∗, and the set of feasible points is a convex set.

2. It is within a ρ-neighborhood of the local optima x, i.e.

∥x− x0∥2 =
ρ

∥x− x∗∥2
∥x− x∗∥2 = ρ.

3. Finally, observe that the objective value at x0 by using the convexity
of f0 can be upper bounded as,

f0(x0) ≤
(
1− ρ

∥x− x∗∥2

)
f0(x) +

ρ

∥x− x∗∥2
f0(x

∗)

= f0(x) +
ρ

∥x− x∗∥2
(f0(x

∗)− f0(x)) < f0(x),

since f0(x
∗) < f0(x). However, since x0 is in the ρ-neighborhood of x,

this final claim contradicts the local optimality of x.

As a consequence we see that there cannot be any feasible x∗ which satisfies
f0(x

∗) < f0(x).

2.2 Convex Sets

We have already defined convex sets so let us briefly reflect on why they are
so important in optimization. Here is picture you should have in your head,
suppose we are optimizing some function over a set C and the function is
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simple (linear) and takes smaller values in the direction of the arrow. In case
the domain is convex, we can follow the “good direction” and when we hit a
“wall” declare that we’re done. If it’s not convex, we have a problem – there
could be some “juicy” points (with much better objective value) somewhere
“across the wall”, and there is no easy way to optimize.

2.2.1 Examples of Convex Sets

Our next goal will be to describe some examples.

1. Convex Hull: For a given collection of points x1, . . . , xk ∈ Rk, a
convex combination of the points is a linear combination,

θ1x1 + . . .+ θkxk,

with θi ≥ 0, and
∑k

i=1 θi = 1. For a set C, the convex hull conv(C) is the
set of all convex combinations of elements of C. That is, conv{x1, . . . , xk} =
{∑k

i=1 θixi : 0 ≤ θi ≤ 1,
∑k

i=1 θi = 1}. This is always a convex set (and
is the smallest convex set that contains C).

Many more examples (in each case, would be a good exercise to figure out
how you would verify convexity):

2. Trivial ones: empty set, point, line

3. Norm ball: {x : ∥x∥ ≤ r}, for any given norm ∥ · ∥ and radius r ≥ 0.

Background: (Norms) When defined over real vector space, a
norm is a function g : Rn → R that satisfies for all x, y ∈ Rn and
c ∈ R:
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(a) The triangle inequality: g(x+ y) ≤ g(x) + g(y)

(b) Absolute homogeneity: g(cx) = |c|g(x)
(c) Positive definiteness: if g(x) = 0 then x = 0

Examples include: the absolute value function |x| for x ∈ R; the ℓ1-
norm ||x||1 =

∑n
i=1 |xi| for x ∈ Rn; the ℓ2-norm ||x||2 =

√∑n
i=1 x

2
i .

4. Hyperplane: {x : aTx = b} for a given a, b.

5. Halfspace: {x : aTx ≤ b} for a given a, b. Note that halfspaces
are fundamental convex sets. We will think about them in more detail
when discussing the separating and supporting hyperplane theorems.
They are also at the heart of convex duality.

6. Affine space: {x : Ax = b}, for given A, b.

Here is a slightly more interesting example.

7.

Theorem 2.6. The set of optimal solutions Xopt to a convex optimiza-
tion problem is a convex set.

Proof: Suppose we consider, x1, x2 ∈ Xopt. Since they are both
optimal we must have that f0(x1) = f0(x2). Now, consider x0 =
θx1 + (1 − θ)x2, where 0 ≤ θ ≤ 1. x0 is feasible, since the set of
feasible solutions is convex. Further, by convexity of the objective we
see that,

f0(x0) ≤ θf0(x1) + (1− θ)f0(x2) ≤ f0(x1),

and so x0 ∈ Xopt also.

Segue... Next time we will consider a few more examples of convex sets
and define operations that preserve convexity of a set, before turning to
convex functions.
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