
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 20: Momentum & Nesterov Acceleration
Instructor:1 Matt Gormley November 15, 2023

20.1 Momentum and Acceleration for SGD

20.1.1 SGD and Mini-batch SGD

Assume now that we are trying to minimize a function f with the structure:

f(x) =
1

n

n∑
i=1

fi(x).

Stochastic gradient descent repeatedly updates:

gt = ∇fit(x
t)

xt+1 = xt − ηtg
t

where at each iteration we choose an index it uniformly at random from
{1, . . . , n}.

Mini-batch SGD instead chooses subsets It ⊂ {1, . . . , n} of size m (say), and
computes:

gt =
1

m

∑
i∈It

∇fi(x
t)

xt+1 = xt − ηtg
t

If the subsets are chosen uniformly at random from {1, . . . , n} then this is
a valid stochastic gradient. It has a variance which is a factor of m smaller
(but can be m times more expensive to compute).

1These notes were originally written by Ryan Tibshirani for 10-725 Fall 2019 (original
version: here) and were edited and adapted for 10-425/625.

20-1

https://www.stat.cmu.edu/~ryantibs/convexopt/

Lecture 20: Momentum & Nesterov Acceleration 20-2

20.1.2 SGD with Classical Momentum

Here we consider SGD with classical momentum. The idea is that we include
an additional weight β ∈ [0, 1] that trades off between how much to step in
the direction of the current gradient (small β) and how much to continue
moving the direction that we have been moving (large β). In short, v(t)

keeps an exponential moving average of the gradient vectors.

g(t) = ∇fit(x
t) or g(t) =

1

m

∑
i∈It

∇fi(x
t)

v(t) = βv(t−1) + (1− β)g(t)

x(t) = x(t−1) − v(t)

We implement this within the IGM with Random Permutations setup, shuf-
fling the order in which we visit each fi at the start of each epoch—or using
mini-Batch SGD.

In practice, it’s common to use two hyperparameters: β affects the terminal
velocity and η is a learning rate.

v(t) = βv(t−1) + ηg(t)

x(t) = x(t−1) − v(t)

Example 20.1 (Linear Objective). Suppose we had a linear objective such
that the gradient was constant at every timestep: g(t) = g. In this case,
we will build momentum in the direction of −g until we reach a maximum
velocity with a step size of η||g||2

1−β
where the quantity 1

1−β
bounds how much

momentum we can build up.

Physics Motivation We can think of the momentum term v(t) as rep-
resenting the velocity of a particle where the force applied to that particle
is in the direction of the negative gradient −g(t). The other force is vis-
cous drag in the direction −v(t). Note that this differs from turbulent drag
which would have force proportional to the square of the velocity or from dry
friction which has constant magnitude. Writing out the partial differential
equations for this system and applying Euler’s method to solve it gives rise
to the momentum algorithm.

Lecture 20: Momentum & Nesterov Acceleration 20-3

So the analogy we could consider is a force −g(t) pulling our particle along
according to some function f through water where it experiences viscous
drag.

20.1.3 SGD with Nesterov Momentum

We can take Nesterov’s accellerated gradient method and apply it to SGD as
well. The result looks quite similar to classical momentum with an important
difference: we evaluate the gradient at the the point that we would step to
if we continued in the current momentum direction. The algorithm then
repeats the following for t = 1, 2, 3...:

x̃t = x(t−1) − ηv(t−1)

g(t) = ∇fit(x̃
t) or g(t) =

1

m

∑
i∈It

∇fi(x̃
t)

v(t) = βv(t−1) + ηg(t)

x(t) = x(t−1) − ηv(t)

Sutskever et al. (2013) explain the difference geometrically as shown below,
where β = µ is the velocity parameter and η = 1.

20.1.4 Analysis

Unfortunately, neither SGD with momentum, nor SGD with Nesterov mo-
mentum enjoys the O(1/k2) convergence rate that we saw for Nesterov ac-
celleration with the proximal gradient method. We are instead left with

Lecture 20: Momentum & Nesterov Acceleration 20-4

O(1/k) convergence rate because the stochastic gradients here nullify the
advantage.

20.2 Proximal Gradient Descent + Nesterov

Acceleration

Recall from a previous lecture

20.2.1 The Algorithm

The particular problem class we’ll focus on now will be: we want to minimize
an unconstrained function f which can be written as the sum of a “nice”,
convex, function g and a potentially non-smooth convex function h, i.e.

min
x∈Rd

g(x) + h(x).

The prox. GD algorithm alternates the following steps:

1. We compute yt+1 = xt − ηt∇g(xt).

2. We then compute our next iterate by solving:

xt+1 = arg min
x∈Rd

[
h(x) +

1

2ηt
∥x− yt+1∥22

]
.

We can equivalently write the update by defining the proximal operator,

proxf (v) = argmin
x

(
f(x) +

1

2
∥x− v∥22

)
.

and then for each time step we update:

xt+1 = proxηth(x
t − ηt∇g(xt))

Lecture 20: Momentum & Nesterov Acceleration 20-5

20.2.2 Nesterov acceleration for proximal gradient de-
scent

Acceleration Turns out we can accelerate proximal gradient descent in
order to achieve the optimal O(1/

√
ϵ) (i.e. O(1/k2)) convergence rate. Four

ideas (three acceleration methods) by Nesterov:

• 1983: original acceleration idea for smooth functions

• 1988: another acceleration idea for smooth functions

• 2005: smoothing techniques for nonsmooth functions, coupled with
original acceleration idea

• 2007: acceleration idea for composite functions2

We will follow Beck and Teboulle (2008), an extension of Nesterov (1983) to
composite functions3

Accelerated proximal gradient method As before, consider:

min
x

g(x) + h(x)

where g convex, differentiable, and h convex. Accelerated proximal gradient
method: choose initial point x(0) = x(−1) ∈ Rn, repeat:

v = x(t−1) +
t− 2

t+ 1
(x(t−1) − x(t−2))

x(t) = proxηth
(
v − ηt∇g(v)

)
for t = 1, 2, 3, . . .

• First step t = 1 is just usual proximal gradient update

• After that, v = x(t−1) + t−2
t+1

(x(t−1) − x(t−2)) carries some “momentum”
from previous iterations

• When h = 0 we get accelerated gradient method

2Each step uses entire history of previous steps and makes two prox calls
3Each step uses information from two last steps and makes one prox call

Lecture 20: Momentum & Nesterov Acceleration 20-6

Momentum weights:

●

●

●

●

●

●

●
●
●
●
●●

●●
●●

●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

−
0.

5
0.

0
0.

5
1.

0

k

(k
 −

 2
)/

(k
 +

 1
)

Back to lasso example: acceleration can really help!

0 200 400 600 800 1000

0.
00

2
0.

00
5

0.
02

0
0.

05
0

0.
20

0
0.

50
0

k

f−
fs

ta
r

Subgradient method
Proximal gradient
Nesterov acceleration

Note: accelerated proximal gradient is not a descent method

Backtracking line search Backtracking under with acceleration in dif-
ferent ways. Simple approach: fix β < 1, η0 = 1. At iteration k, start with
η = ηk−1, and while

g(x+) > g(v) +∇g(v)T (x+ − v) +
1

2η
∥x+ − v∥22

Lecture 20: Momentum & Nesterov Acceleration 20-7

shrink η = βη, and let x+ = proxηh(v − η∇g(v)). Else keep x+

Note that this strategy forces us to take decreasing step sizes ... (more
complicated strategies exist which avoid this)

Convergence analysis For criterion f(x) = g(x) + h(x), we assume as
before:

• g is convex, differentiable, dom(g) = Rn, and ∇g is Lipschitz continu-
ous with constant L > 0

• h is convex, proxηh(x) = argminz{∥x− z∥22/(2η) + h(z)} can be evalu-
ated

Theorem: Accelerated proximal gradient method with fixed step size
η ≤ 1/L satisfies

f(x(k))− f ⋆ ≤ 2∥x(0) − x⋆∥22
η(k + 1)2

and same result holds for backtracking, with η replaced by β/L

Achieves optimal rate O(1/k2) or O(1/
√
ϵ) for first-order methods

FISTA Back to lasso problem:

min
β

1

2
∥y −Xβ∥22 + λ∥β∥1

Recall ISTA (Iterative Soft-thresholding Algorithm):

β(t) = Sληt(β
(t−1) + ηtX

T (y −Xβ(t−1))
)
, t = 1, 2, 3, . . .

Sλ(·) being vector soft-thresholding. Applying acceleration gives us FISTA
(F is for Fast):4 for t = 1, 2, 3, . . .,

v = β(t−1) +
t− 2

t+ 1
(β(t−1) − β(t−2))

β(t) = Sληt

(
v + ηtX

T (y −Xv)
)
,

4Beck and Teboulle (2008) actually call their general acceleration technique (for general
g, h) FISTA, which may be somewhat confusing

Lecture 20: Momentum & Nesterov Acceleration 20-8

Lasso regression: 100 instances (with n = 100, p = 500):

0 200 400 600 800 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

k

f(
k)

−
fs

ta
r

ISTA
FISTA

Lasso logistic regression: 100 instances (n = 100, p = 500):

0 200 400 600 800 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

k

f(
k)

−
fs

ta
r

ISTA
FISTA

Is acceleration always useful?

Lecture 20: Momentum & Nesterov Acceleration 20-9

Acceleration can be a very effective speedup tool ... but should it always be
used?

In practice the speedup of using acceleration is diminished in the presence of
warm starts. For example, suppose want to solve lasso problem for tuning
parameters values

λ1 > λ2 > · · · > λr

• When solving for λ1, initialize x(0) = 0, record solution x̂(λ1)

• When solving for λj, initialize x
(0) = x̂(λj−1), the recorded solution for

λj−1

Over a fine enough grid of λ values, proximal gradient descent can often
perform just as well without acceleration

Sometimes backtracking and acceleration can be disadvantageous! For the
matrix completion problem: the proximal gradient update is

B+ = Sλ

(
B + t

(
PΩ(Y)− P⊥(B)

))
where Sλ is the matrix soft-thresholding operator ... requires SVD

• One backtracking loop evaluates prox, across various values of t. For
matrix completion, this means multiple SVDs ...

• Acceleration changes argument we pass to prox: v − t∇g(v) instead of
x− t∇g(x). For matrix completion (and t = 1),

B −∇g(B) = PΩ(Y)︸ ︷︷ ︸
sparse

+P⊥
Ω (B)︸ ︷︷ ︸

low rank
a

⇒ fast SVD

V −∇g(V) = PΩ(Y)︸ ︷︷ ︸
sparse

+ P⊥
Ω (V)︸ ︷︷ ︸

not necessarily
low rank

⇒ slow SVD

	Momentum and Acceleration for SGD
	SGD and Mini-batch SGD
	SGD with Classical Momentum
	SGD with Nesterov Momentum
	Analysis

	Proximal Gradient Descent + Nesterov Acceleration
	The Algorithm
	Nesterov acceleration for proximal gradient descent

