
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 21: Adaptive Step Sizes
Instructor:1 Matt Gormley November 20, 2023

21.1 Adaptive step sizes

Motivation Another big topic in stochastic optimization these days is
adaptive step sizes.

To motivate, let’s consider a logistic regression problem, where xij are binary,
and many of them are zero. For example, classifying if a given movie review
is positive or negative:

Piece of subtle art. Maybe a masterpiece. Doubtlessly a special story about
the ambiguity of existence.

Some words are common (blue) and uninformative and some rare (green)
and informative. Here:

• xij represents whether the jth word is present in ith review

• yi represents the ith review is positive or negative (sentiment)

If we aim to minimize the negative log-likelihood of this binary logistic re-
gression model, then our overall objective is f(β) =

∑n
i=1 fi(β) for n training

examples, where fi is the the cross entropy loss,

ℓ(ŷ, yi) = −yi log(p(yi = 1 | xi, β))− (1− yi) log(p(yi = 0 | xi, β)),
applied to our model p(yi = 1 | xi, β) = 1

1+exp(−xTi β)
which we can simplify

to:
fi(β) = −yixTi β + log(1 + exp(xTi β))

The gradient of this per-example objective is:

∇fi(β) =
(
− yi +

1

1 + exp(−xTi β)

)
xi.

1These notes were originally written by Ryan Tibshirani for 10-725 Fall 2019 (original
version: here) and were edited and adapted for 10-425/625.
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Observation: For some feature j, xij = 0 implies that ∇βjfi(β) = 0. Also
∥∇fi(β)∥2 is large when ith review is misclassified.

So what does SGD do?

• Gives equal weight to common and to rare informative words.

• Diminishing step sizes tk means the rare informative features are learned
very slowly ...

To escape this long wait, we’ll have to adapt the step sizes to pick up the
informative features.

21.1.1 Example Algorithm: AdaGrad

AdaGrad (Duchi, Hazan, and Singer 2010): very popular adaptive method.
Let g(k) = ∇fik(x(k−1)), and update for j = 1, . . . , p:

x
(k)
j = x

(k−1)
j − α

g
(k)
j√∑k

ℓ=1(g
(ℓ)
j )2 + ϵ

Notes:

• AdaGrad does not require tuning learning rate: α > 0 is fixed constant,
learning rate decreases naturally over iterations

• Learning rate of rare informative features diminishes slowly

• Can drastically improve over SGD in sparse problems

• Main weakness is monotonic accumulation of gradients in the denom-
inator ... AdaDelta, Adam, AMSGrad, etc. improve on this, popular
in training deep nets

21.2 Preliminaries

21.2.1 Notation

For vectors x and y, we use ⟨x, y⟩ to denote their dot product. We also use
[x]+ = max(0, x).
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21.2.2 Setting

We consider the settings of stochastic learning and online optimization. Be-
low we formalize the problem as online learning.

Regularized loss minimization Regularized loss minimization yields
the optimization problem:

w∗ = argmin
w∈Ω

1

n

n∑
t=1

ft(w) + r(w) (21.1)

where w ∈ Rd are the model parameters, ft : Ω → R is a loss function, and
r : Ω → R is a reguralization function. Ω is a convex set of parameters. ft is
differentiable and convex. r is convex.

Example regularizers include

• ℓ1-regularization, r(w) = λ||w||1
• ℓ22-regularization, r(w) =

λ
2
||w||22. This is equivalent to a Guassian prior

on the parameters where λ is the inverse variance.

Online Learning In the online learning setting, we choose a sequence of
parameters wt for t = 1, 2, 3, . . .. At each time step t, some adversary gives
us another loss function ft and we receive the loss ft(wt).

Regret The goal is then to ensure that the total loss up to each time step
T ,

∑T
t=1 ft(wt) is not much worse (larger) than minw

∑T
t=1 ft(w), which is the

smallest total loss of any fixed set of parameters w chosen retrospectively.

RT (w) :=
T∑
t=1

ft(wt)−
T∑
t=1

ft(w) (21.2)

Regularized regret The regularized regret simply incorporates the regu-
larizer.

RT (w) :=
T∑
t=1

(ft(wt) + r(wt))−
T∑
t=1

(ft(w)− r(w)) (21.3)

Our goal is to choose an algorithm which bounds this (regularized) regret.
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21.3 Bregman Divergences

Associated with this convex function, is a Bregman divergence, i.e. given
x, y ∈ D:

DΦ(x, y) = Φ(x)− Φ(y)−∇Φ(y)T (x− y).

Given this Bregman divergence and any point y (potentially outside C but
inside D) we can define the Bregman projection,

ΠC(y) = argmin
x∈C

DΦ(x, y).

There are some main examples to keep in mind for this lecture:

1. Usual Gradient Descent: Suppose we take Φ(x) = 1
2
∥x∥22 (this is a

1-strongly convex function with respect to the Euclidean norm). Then
we get,

DΦ(x, y) =
1

2
∥x∥22 −

1

2
∥y∥22 − yT (x− y) =

1

2
∥x− y∥22.

As we will see in a little while our mirror descent updates in this case
are identical to our (projected) GD updates from before.

2. Exp Gradient Descent: Suppose we take Φ(x) =
∑d

i=1 xi log xi,
which is defined over the (strictly) positive reals. We get,

DΦ(x, y) =
d∑
i=1

xi log xi −
d∑
i=1

yi log yi −
d∑
i=1

(1 + log yi)(xi − yi)

=
d∑
i=1

xi log(xi/yi)−
d∑
i=1

(xi − yi).

It turns out that Φ(x) is strictly convex over the simplex with respect
to the ℓ1-norm. To see this, we recall Pinsker’s inequality (you might
have seen this in a Stats class like 36-705/36-709) which tells us that
for two distributions p, q (vectors on the d-dimensional simplex):

ℓ1(p, q) ≤
√
2KL(p, q).
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Thus, over the simplex we see that,

DΦ(x, y) = KL(x, y) ≥ 1

2
∥x− y∥21,

i.e. equivalently Φ is 1-strongly convex with respect to the ℓ1-norm on
the simplex.

21.3.1 Properties of Bregman Divergences

There are a few properties of Bregman divergences that will be useful in our
proof of the rate of convergence of mirror descent.

Lemma 21.1 (Three-point Property). For x, y, z ∈ D,

DΦ(x, y) +DΦ(z, x)−DΦ(z, y) = (∇Φ(x)−∇Φ(y))T (x− z).

Proof: We simply use the definition of the Bregman divergence.

Lemma 21.2 (Pythagoras Theorem). Suppose that C is a convex set, x ∈ C
and y ∈ Rd. Then,

DΦ(x,ΠC(y)) +DΦ(ΠC(y), y) ≤ DΦ(x, y).

Proof: We simply use the first-order optimality conditions for the Bregman
projection, i.e. we know that,

ΠC(y) = argmin
x∈C

DΦ(x, y),

so this means that,

(∇Φ(ΠC(y))−∇Φ(y))T (ΠC(y)− x) ≤ 0,

for any x ∈ C. This is the claimed result.

21.4 Algorithms

21.4.1 Stochastic Gradient Descent

SGD defines a simple update for each iteration.

wt+1 = wt − ηt(f
′
t(wt) + r′(wt)) (21.4)

where f ′
t(w) is the gradient of ft or one of its subgradients at point w, and

r′(w) is equivalently a gradient or subgradient of r(w).
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21.4.2 Mirror Descent

Let ϕt = ft+ r denote the sum of the loss function and regularizer at time t.
The update for Mirror Descent [7, 1] is then,

wt+1 = argmin
w∈Ω

η ⟨ϕ′
t(wt), w − wt⟩+Bψ(w,wt) (21.5)

= argmin
w∈Ω

η ⟨f ′
t(wt) + r′(wt), w − wt⟩+Bψ(w,wt) (21.6)

where Bψ is a Bregman divergence and ϕ′
t is a subgradient of ϕt.

The Bregman divergence for ψ is defined as:

Bψ(w, v) = ψ(w)− ψ(v)− ⟨∇ψ(v), w − v⟩ (21.7)

where ∇ψ is the gradient of ψ.

Intuition: This MD update minimizes a linear approximation of the function
ϕt at the current parameters wt while ensuring that the next wt+1 is close to
wt. Notice that we could equivalently replace the second term in the update
with the first-order taylor expansion of ϕt at wt since ϕt(wt) is constant w.r.t.
w. This would give the equivalent update:

wt+1 = argmin
w∈Ω

η(ϕt(wt) + ⟨ϕ′
t(wt), w − wt⟩) +Bψ(w,wt) (21.8)

Mirror Map The mirror map ψ must have two properties:

1. continuously differentiable, and

2. α-strongly convex with respect to a norm || · || on the set of possible
values w.

An example of such a function would be ψ(w) = 1
2
||w||22.

Local Approximation Description of Mirror Descent A natural way
to generalize the gradient descent algorithm is simply to use a general Breg-
man divergence to measure proximity in the local linear approximation of
gradient descent. Despite being a seemingly minor modification to the up-
date step, it’s worth noting that changing this term essentially re-shapes the
space we’re optimizing over in a non-trivial way – changing how we measure
distances is similar to stretching and shrinking the space around the current
iterate, and is also at the heart of things like Newton’s method.
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Concretely, given our current iterate xt we compute the next iterate by solv-
ing the program:

xt+1 = argmin
x∈C

f(xt) +∇f(xt)T (x− xt) +
1

η
DΦ(x, x

t).

We cannot always solve for this iteration in closed-form (similar to how we
can’t always solve a prox. computation in closed form). However, it will turn
out that for nice mirror maps ϕ this iteration has a simple description.

21.4.3 Composite Objective Mirror Descent

Composite objective mirror descent (COMID) [4] uses the following update.

wt+1 = argmin
w∈Ω

η ⟨f ′
t(wt), w − wt⟩+ ηr(w) +Bψ(w,wt) (21.9)

This update is identical to that of Mirror Descent in Eq. (21.6), except that
we do not linearize r(w), but instead include it directly in the minimization.

For many choices of r(w), this update has a closed form.

There are several first-order algorithms which are special cases of composite
objective mirror descent:

• Forward-backward splitting (e.g. [8, 2])

• Projected gradient method

• Mirror descent

• Truncated gradient [6]

21.4.4 Regularized Dual Averaging

Regularized Dual Averaging (RDA) [9] has the following update. Here ψt is
called the proximal term.

ḡt =
t− 1

t
ḡt−1 +

1

t
f ′
t(wt) (21.10)

wt+1 = argmin
w∈Ω

η ⟨ḡt, w⟩+ ηr(w) +
1

t
ψt(w) (21.11)
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where η > 0 is a fixed step size, and ḡt keeps a running average of the
subgradients:

ḡt =
1

t

t∑
s=1

f ′
s(ws) (21.12)

Like Composite Objective Mirror Descent, the regularizer r is included in its
entirety and not linearized.

Again, for many choices of r(w), this update has a closed form.

Intuition: The RDA update minimizes a linear term involving the average
gradient, the full regularizer, and an additional function ψt which is strongly
convex.

21.4.5 AdaGrad

The AdaGrad family of algorithms [5, 3] are defined by the Composite Objec-
tive Mirror Descent and Regularized Dual Averaging updates for a particular
choice of ψt which is “adapted over time in a data-driven way.”

COMID: wt+1 = argmin
w∈Ω

η ⟨f ′
t(wt), w − wt⟩ +ηr(w) +Bψ(w,wt) (21.13)

RDA: wt+1 = argmin
w∈Ω

η ⟨ḡt, w⟩ +ηr(w) +
1

t
ψt(w) (21.14)

The key contribution of AdaGrad is defining the proximal functions to be
the squared Mahalanobis norm:

ψt(w) =
1

2
⟨w,Htw⟩ (21.15)

where Ht = δI + diag(Gt)
1/2 (Diagonal) (21.16)

or Ht = δI +G
1/2
t (Full Matrix) (21.17)

and Gt =
t∑

s=1

f ′
s(w)

Tf ′
s(w) (21.18)

In the diagonal case, the values in Ht, ii = δ +
√∑t

s=1(f
′
s(w)i)

2 are the sum

of the squares of the ith element of the gradient over all time steps up to t.
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With this definition of ψt, the updates can then be simplified to:

COMID: wt+1 = argmin
w∈Ω

⟨ηf ′
t(wt)−Htwt, w⟩ +ηr(w) +

1

2
⟨w,Htw⟩

(21.19)

RDA: wt+1 = argmin
w∈Ω

⟨ηtḡt, w⟩ +ηr(w) +
1

2
⟨w,Htw⟩

(21.20)

21.5 Summary of Algorithm Updates

Below, we reiterate all the updates in one place:

SGD: wt+1 = wt − ηt(f
′
t(wt) + r′(wt))

MD: wt+1 = argmin
w∈Ω

η ⟨f ′
t(wt), w − wt⟩+ ηr(w) +Bψ(w,wt)

COMID: wt+1 = argmin
w∈Ω

η ⟨f ′
t(wt), w − wt⟩+ ηr(w) +Bψ(w,wt)

RDA: wt+1 = argmin
w∈Ω

η ⟨ḡt, w⟩+ ηr(w) +
1

t
ψt(w)

AdaGrad-COMID: wt+1 = argmin
w∈Ω

η ⟨f ′
t(wt)−Htwt, w⟩+ ηr(w) +

1

2
⟨w,Htw⟩

AdaGrad-RDA: wt+1 = argmin
w∈Ω

η ⟨tḡt, w⟩+ ηr(w) +
1

2
⟨w,Htw⟩

21.6 Derived Algorithms

ℓ1-regularization For the regularizer r(w) = λ||w||1, we have the following
updates.

RDA: wt+1,i = sign(−ḡt,i)η
√
t[|ḡt,i| − λ]+ (21.21)

AdaGrad-RDA: wt+1,i = sign(−ḡt,i)
ηt

Ht,ii

[|ḡt,i| − λ]+ (21.22)

Fobos (COMID): wt+1,i = sign(wt,i − ηtgt,i [|wt,i − ηtgt,i| − ηtλ]+ (21.23)

AdaGrad-COMID: wt+1,i = sign

(
wt,i −

η

Ht,ii

gt,i

)[∣∣∣∣wt,i − η

Ht,ii

gt,i

∣∣∣∣− λη

Ht,ii

]
+

(21.24)

(21.25)

where [x]+ = max(0, x).
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