
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 22: Adaptive Methods / Regret Minimization
Instructor:1 Matt Gormley November 27, 2023

22.1 More Adaptive Gradient Algorithms

22.1.1 The problem with AdaGrad

Last time, we considered the AdaGrad algorithm which adaptively adjusts
the step size for each parameter xj separately.

AdaGrad (Duchi, Hazan, and Singer 2010): Let g(t) = ∇fit(x
(t−1)), and

update for t = 1, 2, 3, . . .:

x
(t)
j = x

(t−1)
j − α

g
(t)
j√∑t

s=1(g
(s)
j )2 + ϵ

With an abuse of notation in which division and multiplication are element-
wise between vectors and squaring (·)2 is applied elementwise, we can write
the AdaGrad update as follows:

x(t) = x(t−1) − α√∑t
s=1(g

(s))2 + ϵ
g(t)

The problem with AdaGrad is that its step sizes are always decreasing. That
is, the squares of the gradients are always positive and as they accumulate
in the denominator they eventually become infinitesimally small. This has
the potential to slow down training in practice unless the initial step size α
is carefully chosen.

1

22-1



Lecture 22: Adaptive Methods / Regret Minimization 22-2

22.1.2 RMSProp

RMSProp is an unpublished algorithm that appeared in Lecture 62 of Geoff
Hinton’s Coursera course in 2012 that became very popular for training neu-
ral networks. The basic idea is to replace AdaGrad’s full sum over squared
gradients

∑t
s=1(g

(s))2 with an exponentially decaying average
∑t

s=1 γ
t−s(1−

γ)(g(s))2. The update rule can be efficiently computed as:

v(t) = γv(t−1) + (1− γ)(g(t))2

x(t) = x(t−1) − α√
v(t) + ϵ

g(t)

where again we assume the square (·)2 is applied elementwise, and operations
involving x(t−1), v(t), g(t) ∈ Rd are elementwise as well.

Intuitively, the v(t) term keeps a memory of the recent squared gradients, but
to allow that memory to gradually fade. As such, the adaptive step size can
gradually grow and shrink over time as the recent gradients change.

This is particularly helpful in training neural networks for several reasons:

• The objective function for a neural network is nonconvex. At the start
of training, the slope along one dimension xj may be very steep, but
very flat for another xi. However, after passing some saddle point
the optimization may move into a very different topography in which
the slope along xi is stepp and xj is shallow. RMSProp and related
algorithms can account for this change over time.

• A well known issue when training neural networks is the vanishing
gradient problem. That is, the gradient for parameters in lower layers
of the network may be very small near the start of training, while the
gradients are very large for the parameters in high layers of the network.
Again, RMSProp handles this case elegantly by enabling the low-layer
parameters to move faster earlier during training, and then slow down
later when the size of their gradients catches up to those of the higher
layers.

The name RMSProp derives from the exponentially decaying average of the
root mean squared (RMS) of the squared gradients; and its close connection
to the rprop algorithm.

2https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.

pdf

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


Lecture 22: Adaptive Methods / Regret Minimization 22-3

22.1.3 AdaDelta

In the same year, 2012, AdaDelta was introduced to combat the same issues
with AdaGrad. The paper introduced two ideas independently: Idea 1 was
identical to RMSProp. Idea 2 got rid of the learning rate α altogether by
scaling by an exponentially decaying average of the root-mean-squared of the
changes to the parameters δx(t−1) = (x(t−1) − x(t−2)).

u(t) = γu(t−1) + (1− γ)(x(t−1) − x(t−2))

v(t) = γv(t−1) + (1− γ)(g(t))2

x(t) = x(t−1) −
√
u(t) + ϵ√
v(t) + ϵ

g(t)

This has an intuitive motivation if we consider a setting in which the Hessian
matrix H = ∇2f(x) is a diagonal matrix. In this case, the inverse Hessian
is simply H−1 = 1

∇2f(x)
. Then the Newton update is x(t+1) = x(t) + ∆x(t)

where ∆x(t) = (H(t))−1g(t) = g(t)

H(t) . Rewriting, we obtain that 1
H(t) = ∆x(t)

g(t)
.

Since AdaDelta is a first-order method, we can not obtain ∆x(t). However,
the numerator can be viewed as working in the units of some recent values
of ∆x(t) via an exponentially decaying average.

22.1.4 Recall: SGD with Classical Momentum

Recall SGD with classical momentum for a problem f(x) = 1
n

∑n
i=1 fi(x).

At each timestep t = 1, 2, 3, . . ., we compute the gradient of a minibatch
It ⊆ {1, . . . , n} of size m:

g(t) =
1

m

∑
i∈It

∇fi(x
t)

Then we compute a direction to step m(t) and update our parameters as:

m(t) = βm(t−1) + (1− β)g(t)

x(t) = x(t−1) −m(t)

Above we show the one hyperparameter version. The version with two re-
places (1− β) with a learning rate hyperparameter η.



Lecture 22: Adaptive Methods / Regret Minimization 22-4

22.1.5 Adam

Although Geoff Hinton’s slides mention that there were various attempts at
incorporating momentum into RMSProp around 2012, they were not met
with great success until the Adam algorithm appeared in 2015.

Adam (Kingma & Ba, 2015) combines RMSProp with classical momentum.
The basic idea is to scale standard classical momentum by the RMS of the
inverse gradients. We initialize m(0) = 0 and v(0) = 0. Then for timesteps
t = 1, 2, 3, . . .:

m(t) = βm(t−1) + (1− β)m(t) (22.1)

v(t) = γv(t−1) + (1− γ)(g(t))2 (22.2)

m̂(t) =
1

1− βt
m(t) (22.3)

v̂(t) =
1

1− γt
v(t) (22.4)

x(t) = x(t−1) − α√
v̂(t) + ϵ

m̂(t) (22.5)

This is a straightfoward combination of RMSProp and Classical Momentum,
with a rescaling in the 3rd and 4th lines above.

Bias Correction We can interpret m(t) and v(t) as biased estimates of
the mean and variance of the gradient. However, they are biased estimates
because we initialized m(0) = 0 and v(0) = 0. We can correct for that bias by
examining the expected value of, say, v(t):

E[v(t)] = E
[
γv(t−1) + (1− γ)(g(t))2

]
= E

[
t∑

s=1

γt−s(1− γ)(g(s))2

]

=
t∑

s=1

γt−s(1− γ)E[(g(s))2]

=

[
E[(g(t))2]

t∑
s=1

γt−s(1− γ)

]
+ ξ

= E[(g(t))2](1− γt) + ξ



Lecture 22: Adaptive Methods / Regret Minimization 22-5

Above, ξ = 0 if E[(g(s))2] is stationary. Thus, we divide by (1− γt) to obtain
a corrected estimate of the variance.

Adam in Practice Adam works well very a variety of problem types, but
particularly for deep neural networks. The typical hyperparameter settings
are γ = 0.999 (pushing it closer in behavior towards AdaGrad), β = 0.9 (so
that we can frequently renew our momentum direction), ϵ = 10−8, α = 0.001.

For training on large datasets, it is common to use learning rate warmup
in which the pre-initial learning rate α is set to an even smaller value and
gradually increased up to its initial value over the course of some iterations.
This may also help the values of v(t) and m(t) settle in more gradually away
from their initial zero values.

Convergence Analysis of Adam The convergence analysis of Adam, and
related adaptive gradient algorithms, stems from the online gradient descent
analysis of Zinkevich (2003). The key idea is to bound the regret of algorithm
in hindsight. We develop these ideas in the next section.

The key result is that with mild assumptions (convexity, bounded gradients,
bounded distance between iterates) we can show that Adam achieves O(

√
T )

bound on the regret R(T ).

22.2 Regret

We consider the settings of stochastic learning and online optimization. Be-
low we formalize the problem as online learning.

Online Learning In the online learning setting, we choose a sequence of
parameters xt for t = 1, 2, 3, . . .. At each time step t, some adversary gives
us another loss function ft and we receive the loss ft(x

t).

Regret The goal is then to ensure that the total loss up to each time step
T ,

∑T
t=1 ft(x

t) is not much worse (larger) than minx

∑T
t=1 ft(x), which is the

smallest total loss of any fixed set of parameters x chosen retrospectively.

R(T ) =
T∑
t=1

ft(x
t)−min

x

T∑
t=1

ft(x) (22.6)



Lecture 22: Adaptive Methods / Regret Minimization 22-6

Our goal is to choose an algorithm which bounds this regret.

The offline learner If we denote the best single set of parameters in hind-
sight by

x̂ = argmin
x

T∑
t=1

ft(x),

we can see that this is an offline algorithm for choosing a single set of param-
eters that minimize the cost f(x) =

∑T
t=1 ft(x). This offline algorithm has

an advantage over the online learner in that it has full information about all
the losses f1, . . . , fT ahead of time. However, it is at a disadvantage because
it must choose only a single x̂ to use at all timesteps. In this way, if an
adversary chooses ft−1 and ft so that they vary wildly, the oracle will have
a difficult time satisfying both losses. As well, as T grows, the offline model
will see less of an advantage if there is little volatility in the sequence of ft.

Why do we bound regret? As we will see below, Zinkevich (2003)
presents a framework for bounding the regret that has influenced much of
the theory for stochastic optimization that followed. This turns out to be a
compelling theoretical result for SGD and its variants. In this setting, we let
the sequence of functions f1, f2, f3, . . . be defined as follows: at time t, we
select a mini-batch of training examples It and let ft be the average loss on
those examples.

If we had some offline algorithm (e.g. gradient descent, Newton’s method)
that works directly with the average of the ft functions directly, it will find
some x̂ = argminx

∑T
t=1 ft(x).

A bound on our regret R(T ) =
∑T

t=1 ft(x
t)−

∑T
t=1 ft(x̂) should show that the

average loss that we accumulate throughout the course of stochastic training
is (hopefully) not too much worse than the final loss obtained by the non-
stochastic algorithm upon convergence.

22.3 Online Gradient Descent

The online gradient descent algorithm of Zinkevich (2003) is the online vari-
ant of projected gradient descent. That is, suppose we have a constrained



Lecture 22: Adaptive Methods / Regret Minimization 22-7

problem minx∈C
∑T

t=1 ft(x), but we only get to see one ft(·) at a time, and
must choose a corresponding x(t) in response before the next ft+1(·) arrives.

The update rule uses the projection operator PC at each iteration to project
a gradient step back onto the feasible set:

x(t+1) = PC(x
(t) − ηt∇ft(x

(t))

where PC(x) = argmin
y∈C

∥x− y∥2

If we choose C = Rd, we obtain the online gradient descent algorithm.

Regret Analysis For the online gradient descent algorithm, we can obtain
the following regret bound.

Theorem 22.1. Assume our sequence of functions f1, . . . , fT has bounded
gradients ∥∇ft(x)∥2 ≤ G, ∀t, x ∈ C and the diameter of C is bounded
maxx,y∈C ∥x− y∥2 ≤ D. If η = D

G
√
T
, then

R(T ) =
T∑
t=1

ft(x
t)−min

x∈C

T∑
t=1

ft(x) ≤ DG
√
T

Segue... Next time, we’ll prove the theorem.


	More Adaptive Gradient Algorithms
	The problem with AdaGrad
	RMSProp
	AdaDelta
	Recall: SGD with Classical Momentum
	Adam

	Regret
	Online Gradient Descent

