
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 23: Online Gradient Descent / Parallel SGD
Instructor:1 Matt Gormley December 1, 2023

23.1 Online Gradient Descent

The projected online gradient descent algorithm of Zinkevich (2003) is the
online variant of projected gradient descent. That is, suppose we have a
constrained problem minx∈C

∑T
t=1 ft(x), but we only get to see one ft(·) at

a time, and must choose a corresponding x(t) in response before the next
ft+1(·) arrives.

The update rule uses the projection operator PC at each iteration to project
a gradient step back onto the feasible set:

x(t+1) = PC(x
(t) − ηt∇ft(x

(t))

where PC(x) = argmin
y∈C

∥x− y∥2

If we choose C = Rd, we obtain the online gradient descent algorithm.

Regret Analysis For the online gradient descent algorithm, we can obtain
the following regret bound.

Theorem 23.1. Assume our sequence of convex functions f1, . . . , fT has
bounded gradients ∥∇ft(x)∥2 ≤ G, ∀t, x ∈ C and the diameter of the feasible
region C is bounded maxx,y∈C ∥x− y∥2 ≤ D. If η = D

G
√
T
, then

R(T ) =
T∑
t=1

ft(x
t)−min

x∈C

T∑
t=1

ft(x) ≤ DG
√
T

Proof: 2

1

2This is the version of the Zinkevich (2003) proof from Adam Kalai
https://web.archive.org/web/20070416211828/http://people.cs.uchicago.

edu/~kalai/online2004/lect1008.pdf.

23-1

https://web.archive.org/web/20070416211828/http://people.cs.uchicago.edu/~kalai/online2004/lect1008.pdf
https://web.archive.org/web/20070416211828/http://people.cs.uchicago.edu/~kalai/online2004/lect1008.pdf


Lecture 23: Online Gradient Descent / Parallel SGD 23-2

Let a minimum of the function be x∗ = argminx∈C
∑T

t=1 ft(x). Now suppose
we translate the space such that x∗ = 0. In 3D, this amounts to sliding the
function surface until one of the minima (we assumed convex, not strictly
convex) is at the origin. If we run the algorithm on the translated space,
the gradients will be identical; only the iterates will have been shifted. So
proving a regret bound on the translated space is without loss of generality.

The second term in the regret is now
∑T

t=1 ft(0).

Previously, we’ve shown that projection onto a convex set C is a contraction:
∥PC(x) − PC(y)∥2 ≤ ∥x − y∥2. For our translated C from above we know
that the origin is in the feasible set 0 ∈ C. So if we let y = 0 to be the origin,
then:

∥PC(x)∥2 ≤ ∥x∥2.

Now, define the potential Φt =
1
2η
∥x(t)∥22, which measures how close x(t) is to

the optimal x∗ = 0. Next we bound the difference of subsequent potentials:

Φt+1 − Φt =
1

2η
(∥x(t+1)∥22 − ∥x(t)∥22)

=
1

2η
(∥PC(x

(t) − ηt∇ft(x
(t))∥22 − ∥x(t)∥22)

≤ 1

2η
(∥x(t) − ηt∇ft(x

(t)∥22 − ∥x(t)∥22)

where the second line is from the algorithm definition and the third because
∥PC(x)∥2 ≤ ∥x∥2. Using the fact that ∥a + b∥22 = ∥a∥22 + ∥b∥22 + 2aT b to
expand the first term:

Φt+1 − Φt ≤
1

2η
(∥x(t) − η∇ft(x

(t)∥22 − ∥x(t)∥22)

=
1

2η
(∥x(t)∥22 + η2∥∇ft(x

(t)∥22 − 2η(x(t))T∇ft(x
(t))− ∥x(t)∥22)

=
η

2
∥∇ft(x

(t)∥22 − (x(t))T∇ft(x
(t))

=
η

2
G2 − (x(t))T∇ft(x

(t))

The last line is by assumption.



Lecture 23: Online Gradient Descent / Parallel SGD 23-3

Applying the first-order convexity condition to x(t) and the minimum x∗ = 0,
we obtain:

ft(0) ≥ ft(x
(t)) +∇ft(x

(t))T (0− x(t))

⇒ft(x
(t))− ft(0) ≤ (x(t))T∇ft(x

(t))

Summing this result with our bound on the potentials shows:

ft(x
(t))− ft(0) + Φt+1 − Φt ≤

η

2
G2

This inequality shows that if ft(x
(t) is much larger than ft(0), then Φt must

also be much larger than Φt+1, which means that x(t+1) is much closer to x∗

than xt was.

Now we sum both sides from t = 1, . . . , T :

T∑
t=1

ft(x
(t))− ft(0) + Φt+1 − Φt ≤

T∑
t=1

η

2
G2

T∑
t=1

(ft(x
(t))− ft(0)) + (ΦT+1 − Φ1) ≤

ηTG2

2

Since the potentials are non-negative:

T∑
t=1

ft(x
(t))−

T∑
t=1

ft(0)) ≤ Φ1 +
ηTG2

2

By our assumption of bounded diameter, we have that Φt ≤ 1
2η
D2. This

yields:

T∑
t=1

ft(x
(t))−

T∑
t=1

ft(0)) ≤
T

2η
D2 +

ηTG2

2

≤ DG
√
T

where the second line is obtained by substituting η = D
G
√
T
.

Corollary 23.2. The limit of the average regret as T goes to infinity is
bounded above by zero:

lim
T→∞

R(T )/T ≤ 0

Intuitively, if we were to run the algorithm long enough, the online gradient
descent algorithm would do just as well as its offline counterpart.



Lecture 23: Online Gradient Descent / Parallel SGD 23-4

23.1.1 Other Regret Bounds

AdaGrad Duchi et al. (2011) show that AdaGrad also achieves a R(T ) ∈
O(

√
dT ) regret bound where d is the dimensionality of x ∈ Rd. They further

show that in cases where the features are sparse, AdaGrad can obtain a
R(T ) ∈ O(log d

√
T ) bound. In this setting AdaGrad can outperform online

gradient descent, which because D = 2
√
d has a regret bound is R(T ) ∈

O(
√
dT ).

Adam Kingma & Ba (2015) find that Adam enjoys a similar R(T ) ∈ O(T )
regret bound.

23.2 Parallel SGD

For many applications, stochastic gradient descent (SGD) is used to minimize
empirical risk over a very large training dataset. In these cases, paralleliza-
tion can aid greatly in reducing the wall clock time to convergence. However,
parallelization is not without costs such as communication overhead, long
wait times for straggling workers, redundant storage of training data. We
begin by considering the most straightforward applications of parallelism.

Data Parallelism vs. Model Parallelism Here we focus on data paral-
lelism in which the data is distributed.

Modern deep learning architectures are often too large to fit on a single GPU.
This setting requires model parallelism, in which the model is divided across
GPUs.

Comparison of data and model
parallelism from Verbraeken et
al. (2021).

http://arxiv.org/abs/1912.09789
http://arxiv.org/abs/1912.09789


Lecture 23: Online Gradient Descent / Parallel SGD 23-5

23.2.1 Distrbuted Synchonous Mini-Batch SGD

Suppose our problem is of the form minx

∑n
i=1 fi(x). If the computation cost

of computing fi(x) and ∇fi(x) is substantially more than that of sending x
between machines and computing the update x(t+1) = x(t)−η∇ft(x), then we
can achieve trivial parallelism by dividing each mini-batch acrossmmachines.

Algorithm 1 DistributedSyncSGD(m)

1: Choose initial point x0 ∈ Rn

2: for t = 1, 2, . . . , T do
3: On the head node: Send x(t) to each worker node k
4: for k = 1, . . . ,m in parallel do
5: On worker node k:
6: Sample minibatch I

(t)
k ⊆ {1, . . . , n} of size b

7: Compute g
(t)
k =

∑
i∈I(t)k

∇fi(x
(t))

8: Send g
(t)
k to head node

9: On the head node: xt+1 = xt − ηt
∑m

k=1 g
(t)
k

Although the algorithm is exact (i.e. the parallel version and the local version
do identical computation), various problems can arise.

• If one worker node is much slower than the rest, then the computation
at each iteration will be bottlenecked by the speed of the slowest node.

• If the time to send gradients g
(t)
k and iterates x(t) is comparable to the

gradient computation, then the base cost of gradient computation goes
up substantially.

• If the dataset is too large to fit on one node, then we will have to
substantially increase communication costs by sending data to nodes
on demand.


	Online Gradient Descent
	Other Regret Bounds

	Parallel SGD
	Distrbuted Synchonous Mini-Batch SGD


