
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 24: Online Gradient Descent / Parallel SGD
Instructor:1 Matt Gormley December 4, 2023

24.1 Parallel SGD

For many applications, stochastic gradient descent (SGD) is used to minimize
empirical risk over a very large training dataset. In these cases, paralleliza-
tion can aid greatly in reducing the wall clock time to convergence. However,
parallelization is not without costs such as communication overhead, long
wait times for straggling workers, redundant storage of training data. We
begin by considering the most straightforward applications of parallelism.

Recall from a previous lecture

Data Parallelism vs. Model Parallelism Here we focus on data paral-
lelism in which the data is distributed.

Modern deep learning architectures are often too large to fit on a single GPU.
This setting requires model parallelism, in which the model is divided across
GPUs.

1

24-1



Lecture 24: Online Gradient Descent / Parallel SGD 24-2

Comparison of data and model
parallelism from Verbraeken et
al. (2021).

24.1.1 Distrbuted Synchonous Mini-Batch SGD

Suppose our problem is of the form minx

∑n
i=1 fi(x). If the computation cost

of computing fi(x) and ∇fi(x) is substantially more than that of sending x
between machines and computing the update x(t+1) = x(t)−η∇ft(x), then we
can achieve trivial parallelism by dividing each mini-batch acrossmmachines.

Algorithm 1 DistributedSyncSGD(m)

1: Choose initial point x0 ∈ Rn

2: for t = 1, 2, . . . , T do
3: On the head node: Send x(t) to each worker node k
4: for k = 1, . . . ,m in parallel do
5: On worker node k:
6: Sample minibatch I

(t)
k ⊆ {1, . . . , n} of size b

7: Compute g
(t)
k =

∑
i∈I(t)k

∇fi(x(t))

8: Send g
(t)
k to head node

9: On the head node: xt+1 = xt − ηt
∑m

k=1 g
(t)
k

Although the algorithm is exact (i.e. the parallel version and the local version
do identical computation), various problems can arise.

• If one worker node is much slower than the rest, then the computation
at each iteration will be bottlenecked by the speed of the slowest node.

• If the time to send gradients g
(t)
k and iterates x(t) is comparable to the

http://arxiv.org/abs/1912.09789
http://arxiv.org/abs/1912.09789


Lecture 24: Online Gradient Descent / Parallel SGD 24-3

gradient computation, then the base cost of gradient computation goes
up substantially.

• If the dataset is too large to fit on one node, then we will have to
substantially increase communication costs by sending data to nodes
on demand.

24.1.2 Distributed Asynchronous SGD

A common alternative to distributed synchronous SGD is to allow a single
parameter server to asynchronously receive and apply gradient updates. This
comes at a great cost however: the asynchronous algorithm is no longer
faithful to SGD, which is an inherently serial algorithm.

Algorithm 2 AsyncSGD-ParameterServer

1: Choose initial point x0 ∈ Rn

2: for t = 1, 2, . . . , T do
3: Wait to receive g

(t)
k from the next worker

4: Immediately apply update xt+1 = xt − ηtg
(t)
k

Algorithm 3 AsyncSGD-Worker-k

1: for s = 1, 2, 3, . . . do
2: Request x(s) from parameter server
3: Sample minibatch I

(s)
k ⊆ {1, . . . , n} of size b

4: Compute g
(s)
k =

∑
i∈I(s)k

∇fi(x(s))

5: Send g
(s)
k to parameter server

This algorithm solves the problem of straggler nodes that take a long time
to send their g

(t)
k because the parameter server no longer waits for them all

to complete.

The problem of stale parameters However, the gradient updates are
not valid because they are usually computed from stale iterates x(t). Workers
regularly compute their gradients on outdated parameters: for example, a
worker might receive parameters x(12) and begin computing its stochastic



Lecture 24: Online Gradient Descent / Parallel SGD 24-4

gradient. Meanwhile the parameters might update five times to x(17). By the
time the worker that received parameters x(12) sends its gradient, they will
have been based on stale parameters.

Definition 24.1 (Staleness). The staleness of a gradient in an asynchronous
distributed learner is the number of updates that were made to the parameters
(i.e. iterations) between the iteration the parameters were read to compute
the gradient, and the update on the parameter server made with that gradient.

Stale parameters and test accuracy Chen et al. (2017) systematically
evaluated the effect to stale gradients when training a convolutional neural
network (CNN) model for MINIST handwritten digit classification. Rather
than working in a real-world distributed environment, they simulated stale-
ness so that they could artificially vary the amount of staleness.

Systematic study of the effect
of staleness on test accuracy
from Chen et al. (2017).

They also found that training became increasingly unstable with more than
15 iterations of staleness and required random restarts on divergence, lower
learning rates, and gradual increase of staleness.

24.1.3 Sync-SGD

Distributed synchronous SGD completely avoids the problem of staleness, but
can be slowed down by stragglers in the worker pool. Sync-SGD addresses
this problem by adding extra workers to the pool (Chen et al., 2017). To
obtain a batch size of m × b, Sync-SGD spawns m + e workers, with each
one accumulating gradients for b training examples. The parameter server
then accepts only the gradients from the first m workers, discarding the e

http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981


Lecture 24: Online Gradient Descent / Parallel SGD 24-5

stragglers. In this way, the workers are effectively wasting e/(m+ e) of their
work, but there is a lower chance the parameter server will be stuck waiting.

Algorithm 4 SyncSGD-ParameterServer

1: Choose initial point x0 ∈ Rn

2: for t = 1, 2, . . . , T do
3: Initialize G(t) ← {}
4: for l = 1, . . . ,m do
5: Wait to receive g

(t)
k from the next fastest worker k

6: Accumulate G(t) ← G(t) ∪ {g(t)k }
7: Apply update xt+1 = xt − ηt

∑
g∈G g

The Sync-SGD worker is identical to the normal asychronous/synchronous
settings:

Algorithm 5 SyncSGD-Worker-k

1: for s = 1, 2, 3, . . . do
2: Request x(s) from parameter server
3: Sample minibatch I

(s)
k ⊆ {1, . . . , n} of size b

4: Compute g
(s)
k =

∑
i∈I(s)k

∇fi(x(s))

5: Send g
(s)
k to parameter server

Chen et al. (2017) evaluated the algorithm in a real-world distributed envi-
ronment to train the Inception model on ImageNet.

The test precision of the syn-
chronous learner is consis-
tently higher than that of the
asynchronous learner (from
Chen et al. (2017)).

http://arxiv.org/abs/1604.00981


Lecture 24: Online Gradient Descent / Parallel SGD 24-6

Convergence on test precision
of Sync-SGD is also faster than
its asynchronous counterpart
(from Chen et al. (2017)).

Sync-SGD is not a true stochastic gradient method Because this
approach takes the gradients of only the m fastest workers out of the m+ e
total, the mini-batch that is sampled in the end is not a true uniform distri-
bution over training examples. Instead, it will be skewed towards inclusion
of those training examples whose gradients can be computed quickly.

(Could we guarantee that the expected gradient is the true gradient some-
how? Consider a setting in which we know that every gradient computation
will take an identical number of FLOPS, and the only variance about worker
completion time comes from the workers themselves. In this case, the ex-
pected gradient should equal the true gradient.)

http://arxiv.org/abs/1604.00981

	Parallel SGD
	Distrbuted Synchonous Mini-Batch SGD
	Distributed Asynchronous SGD
	Sync-SGD


