10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 25: Parallel SGD / Nonconvex Optimization
Instructor:* Matt Gormley December 6, 2023

25.1 Parallel SGD

Recall from a previous lecture

25.1.1 Distributed Asynchronous SGD

A common alternative to distributed synchronous SGD is to allow a single
parameter server to asynchronously receive and apply gradient updates. This
comes at a great cost however: the asynchronous algorithm is no longer
faithful to SGD, which is an inherently serial algorithm.

Algorithm 1 AsyNCSGD-PARAMETERSERVER
1: Choose initial point 2° € R®
2: fort=1,2,...,7T do

3: Wait to receive g,(f) from the next worker

4: Immediately apply update /™! = 2t — ntg,(f)

Algorithm 2 AsyNcSGD-WORKER-k
1: for s=1,2,3,... do
2: Request z(®) from parameter server
3: Sample minibatch I,gs) C{1,...,n} of size b
4: Compute g,(cs) = Zid’gs) V fi(z®)

5: Send g,(f) to parameter server

!These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.

25-1

https://www.stat.cmu.edu/~siva/teaching/725/

Lecture 25: Parallel SGD / Nonconvex Optimization 25-2

25.1.2 Delayed SGD

Next we consider what happens if you define the algorithm to explicitly
include a fixed amount of delay (staleness). The amount of delay 7 is the
number of iterations between when the update is made and which iterate
was used to compute the gradient. The algorithm is called Delayed SGD
(Zinkevich et al., 2009). We consider the full version which assumes the
iterates are constrained to a convex set C.

Algorithm 3 AsyNCSGD-PARAMETERSERVER

1: Choose initial points z(?, ... 27D =0 e R®
2. fort=7,...,T—7—1do
3: Receive the next function f; and incur loss f;(z(*)

Compute gradient g) = V (2
Update 2+ = argmin, . ||z — (2® —n,g")|

The update rule is equivalent to 2+ = Po(2® — ,g%™)) where Py is the

projection operator. Notice delay occurs because we are using stale gradients
(t—7)
g :

Despite this we can obtain bounds on the regret as follows:

e For (-smooth, convex f;, with an appropriate learning rate the regret
can be bounded as R(T) € O(tv/T)

e For B-smooth, a-strongly convex f;, with an appropriate learning rate
the regret can be bounded as R(T") € O(7 + log(T))

25.2 Nearly-Nonconvex Optimization

Next, we’ll discuss a few of the main ideas related to some non-convex prob-
lems where we know how to guarantee (sometimes local) convergence to a
global optimum. These settings are still pretty far from things like optimiza-
tion in deep learning, but they’re already fairly interesting settings.

At a very high-level one should view both the results that we discuss as types
of stability/robustness statements for GD, i.e. GD doesn’t quite require
convexity to be effective.

Lecture 25: Parallel SGD / Nonconvex Optimization 25-3

25.2.1 The Polyak-Lojasiewicz (PL) Condition
25.2.1.1 The PL Condition

Suppose we have a f-smooth function f, that we're interested in minimiz-
ing (unconstrained). We’ll assume that a minimizer z* exists (need not be
unique). This function need not be convex. Suppose it instead satisfies the
so-called u-PL inequality, i.e. for some pu > 0,

SIVF@IE > u(f () — Fa)).

The way to interpret this condition is that it is some weakening of strong
convexity. Recall, that when we discussed the linear convergence of GD we
highlighted the key property that strong convexity gave us, if we're far away
from optimal then strong convexity will ensure that the gradient is large.
The PL condition is a more direct statement of that desirable property (but
highlights the crucial fact that this is all we need for linear rates, i.e. we do
not need convexity itself).

The paper of Karimi-Nutini-Schmidt which re-popularized this condition and
highlighted its usefulness also gives examples of some non-convex functions
which satisfy the condition.

Example func-
tion satisfying
a-PL condition for
Lo 1/32, f(a) =
2 4+ 3sin’(z
from [Karimi et al.
(2020).

4 2 0 2 4

Here is a lemma relating the PL condition to strong convexity:

Lemma 25.1. An a-strongly convex function also satisfies the a-PL inequal-
1ty.

https://arxiv.org/pdf/2103.00065.pdf
https://arxiv.org/pdf/2103.00065.pdf

Lecture 25: Parallel SGD / Nonconvex Optimization 25-4

Proof: We know by strong convexity that for any vy,
e}
F) 2 f@) + V@) (y —2) + e =yl

We can now minimize both sides with respect to y to see that,

1

J@) = f(z) = 51V (@),

which is precisely the a-PL inequality. []

25.2.1.2 GD Convergence under PL Condition

The reason why the PL condition is useful is that it is sufficient (together
with smoothness) to ensure linear convergence of GD. Here is a theorem:

Theorem 25.2. Suppose f is S-smooth, and u-PL, then GD iterates with
n =1/8 converge linearly, i.e.

ety - fat) < (1 _ g) () - f(a*).

Proof: The proof is in some sense a bit simpler than the proof of convergence
with strong convexity (since we’ve already distilled its essence into the PL
inequality). Recall our main descent lemma which holds under smoothness
for our choice of step-size,

) < fat) - %waus

Re-arranging we get,

Fat) = g < (1-4) (16 - 5

This yields the claimed result. |

1. This result is at the heart of many global convergence results in non-
convex optimization (for instance, the analysis of GD for a randomly

Lecture 25: Parallel SGD / Nonconvex Optimization 25-5

initialized neural network in the so-called NTK regime, or the analysis
of the policy gradient method for LQR). The main convenience is that
convexity is some type of global property of a function that can be hard
to verify in some examples, whereas the PL condition is often easier to
verify. In some sense it is a type of 2-point property, i.e. we only need
to verify some condition on the function at the current iterate, relative
to the optimal point, in order to ensure that we make progress in the
current iteration.

2. In our analysis of GD under strong convexity and smoothness we showed
linear convergence of the iterates (not just of their associated function
values). It turns out that something similar is true for PL functions
(one needs to be a bit careful since z* is not unique, so the distance to
the set of the solutions decreases linearly). This proof is a bit involved,
but one can show that PL functions exhibit something called quadratic
growth (again the Karimi-Nutini-Schmidt paper is a great resource),
i.e. letting * denote the closest optimal solution to x we have,

Elle =3 < f(@) = f(a").

This in turn allows us show linear convergence of the iterates.

25.2.2 Local convergence to a Global Optimum of GD

We won’t have time to belabour this point, but it’s also worth noticing, that
our proofs for convergence of GD under strong-convexity and smoothness, or
under PL and smoothness don’t require these conditions to hold globally.

In many cases, one can simply argue that the conditions hold locally around
some optimal point z*, i.e. in some ball of radius r around z* (say). Our
guarantees ensure that if we satisfy these conditions just within the ball and
initialize within the ball, the iterates will (or can be shown in most cases) to
stay within this ball, and converge linearly to the optimal solution. This is
easier to explain with a picture.

The key takeaway is, if you can show some nice properties (things like
smoothness, strong-convexity /PL) hold locally around z* in some region,
then you can usually make some type of statement about the local con-
vergence to z* (i.e. provided you initialize your algorithm smartly it will
converge to the global optimum z*).

Lecture 25: Parallel SGD / Nonconvex Optimization 25-6

25.3 Nonconvex Optimization and The Edge
of Stability

25.3.1 Recall: GD on Smooth Possibly Non-Convex
Functions

Definition 25.3 (S-Smooth). A function f is B-smooth, if its gradient is
Lipschitz continuous with parameter (3, i.e. for any x,y € dom(f),

IVf(z) = Vi)l < Bllz = yll2-

Recall from back in Lecture 9 that some of our first convergence results
with gradient descent did not require convexity. We only assumed that the
function was f-smooth (i.e. had Lipschiptz gradient with parameter /).

For a not necessarily convex problem, we should not expect to be able to
find a point which is a global optimum. Instead we’ll settle for finding a
point with small gradient norm, i.e. a point x for which |V f(z)|]2 < € (say).
These points are called e-substationary. These points are called approximate
saddle points (points where the gradient is 0 are called saddle points).

The main “descent” lemma for gradient descent:

Lemma 25.4. For a 5-smooth function f, and any step-size n < 2/, the
GD algorithm is a descent algorithm. For any n < 1/f it further satisfies,

@) < flat) = ZIV I3

The main theorem for gradient descent:

Theorem 25.5. For a [-smooth function f, let x* be any minimizer of f,
then GD with step-size % has the property that within k iterations it will reach
a point x such that

Vsl <) 2201 — 1)

Lecture 25: Parallel SGD / Nonconvex Optimization 25-7

25.3.2 Implications for nonconvex, but S-smooth func-
tions

Revisiting these results while considering that f could be nonconvex reveals
that they are quite profound:

1. The lemma says that as long as the function f is (at least locally) (-
smooth, then each iteration will yield a decrease in our objective; and
that decrease will be larger when the gradient is larger.

2. The theorem tells us that even for nonconvex functions gradient descent
will converge to a saddle point (i.e. a flat part of the function) at a
rate of O(v/k). So if we use gradient descent on a deep neural network,
we can still guarantee something about its convergence. Of course, this
isn’t the guarantee we really want, but it is a good starting point.

3. The key requirement for both of these is that we choose the learning
rate appropriately (i.e. proportional to the inverse of the smoothness
of the function).

25.3.3 Nonconvexity and Deep Learning

Why do we care about nonconvexity? Because most of the objective func-
tions that we optimize in machine learning are nonconvex. This is a simple
property of the deep neural networks that dominate most of the applications
of ML today.

25.3.4 Does Deep Learning Work Because We Picked
Safe Learning Rates? No.

Cohen et al. (2022) show empirically that when training deep neural net-
works with gradient descent, the optimizer converges and yet the loss is not
behaving according to the descent lemma: instead, it increases and decreases
wildly during training. This means that the learning rates we use must not
be n < 1/ for the smoothness § of the objective.

https://arxiv.org/pdf/2103.00065.pdf

Lecture 25: Parallel SGD / Nonconvex Optimization 25-8

ResNet on CIFAR-10

Gradient descent convergence w27 : z:ﬁo
for ResNet on CIFAR-10 from 2 — N=2/20
Cohen et al. (2022). 5 17 —— 19340

0 \ WI.

They observe the same behavior when applying Nesterov momentum to a
fully-connected neural network with tanh activations.

train loss (iteration) sharpness (iteration)

Gradient descent
convergence for
tanh network
from Cohen et al.

(2022) 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
] iteration iteration

0.6

Y
o
=3

0.4

MW
=
=3

o
o

train loss
sharpness

0.2 4

o
o
=3

We can measure the local smoothness of the function by the largest eigenvalue
of the Hessian of the training loss, termed the sharpness of the function.
When the sharpness is more than 2/7, training for a locally quadratic function
will become unstable. And, empirically, we see that the iterates where the
objective function spikes occur are when the sharpness of the function as
exceed the 2/n threshold (horizontal dashed line). Further even though we
would expect the sharpness to continue to rise much higher than 2/n gradient
descent somehow prevents it from doing so.

So when training a neural network, if the objective function suddenly spikes,
the natural solution would be to decrease the learning rate. However, this
would be a mistake in practice: in fact, retaining the same high learning rate,
gradient descent continues to (overall) improve the objective. So (counter-
intuitively) we want to use a learning rate that violates the main gradient
descent lemma, since this will lead to the fastest convergence.

25.3.5 The Edge of Stability

Applied to deep learning, gradient descent (and other optimization algo-
rithms) succeed in this regime where the learning rate is high, and the sharp-
ness hovers just above the 2/n threshold. This space is called the Edge of
Stability. To date, very little is understood about why gradient descent still

https://arxiv.org/pdf/2103.00065.pdf
https://arxiv.org/pdf/2103.00065.pdf
https://arxiv.org/pdf/2103.00065.pdf

Lecture 25: Parallel SGD / Nonconvex Optimization 25-9

works in this way:.

	Parallel SGD
	Distributed Asynchronous SGD
	Delayed SGD

	Nearly-Nonconvex Optimization
	The Polyak-Lojasiewicz (PL) Condition
	The PL Condition
	GD Convergence under PL Condition

	Local convergence to a Global Optimum of GD

	Nonconvex Optimization and The Edge of Stability
	Recall: GD on Smooth Possibly Non-Convex Functions
	Implications for nonconvex, but -smooth functions
	Nonconvexity and Deep Learning
	Does Deep Learning Work Because We Picked Safe Learning Rates? No.
	The Edge of Stability

