10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 3: Convex Sets
Instructor:* Matt Gormley September 6, 2023

3.1 Convex Sets (continued)

3.1.1 Examples of Convex Sets

Some more examples (again, useful to make sure you know how to verify
the convexity of these sets):

8. Polyhedra: The set {z : Az < b} for given A, b (or equivalently, sets
of the form {z: Az <b,Cx = d}).
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Background:

Definition 3.1 (Linear independence). Vectors {x1,...,zx} are
linearly independent if there is no Ay, ..., A\ such that Zle AN =
0 except all zeros.

!These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.
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https://www.stat.cmu.edu/~siva/teaching/725/
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Definition 3.2 (Affine independence). Vectors {z1,...,xzx} are
affinely independent if there is no Ay, ..., \g, with Zle Ao =0
such that Zle Aix; = 0 except all zeros.

9. Simplices: For a collection of affinely independent points xq, ..., zg,
the corresponding simplex is simply the convex hull conv{zy, ..., zx}.

A prominent example is the probability simplex, which is the convex
hull of the d basis vectors ey, ..., eq4.

3.1.2 Convex Cones

Background: (Positive Definite and Positive Semidefinite)
Let A € R™ "™ be a symmetric matrix.

Definition 3.3. The matriz A is positive semidefinite, written A = 0,
if T Az > 0 for all x € R™.

Definition 3.4. The matriz A is positive definite, written A = 0, if
2T Az > 0 for all non-zero x € R™.

A set C'is a cone if for every x € C, fx € C for any 6 > 0, i.e. for any point
in C the ray joining that point to the origin must also be in C. Cones are
not convex in general, so we will refer to convexr cones as cones which are
additionally convex.

In the example below, the two rays are a cone; whereas the shaded region is
a convex cone.
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It is easy to see that convex cones additionally satisfy the property that if
21,2y € C then for any 6,0y > 0, 6121 + 0329 € C. These are called conic
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combinations, i.e. for xq,...,x, a conic combination is any point of the form
0121 + ... + Oz, with 8, > 0 is called a conic combination. The conic hull
of a set C collects all conic combinations of points in C, and is the smallest
convex cone containing C'.

There are several important cones:

1. Norm Cone: {(z,?): ||z|| <t}. For the ¢, norm this cone is called
the second-order cone (sometimes called the ice-cream cone).

2. PSD Cone: Denoted S¢ = {X € S?: X = 0}, i.e. X is a symmetric
matrix, with all positive eigenvalues.

3. Polar Cone: For any cone C, the polar cone C° is defined as the
collection of vectors which make an atleast 90-degree angle with all
vectors in C i.e.

C°={z:2"y <0, forallycC}.

CO

There is a fundamental reason why cones will be important to us. We will use
them to characterize optimality. Two cones are important in this context:
the normal cone and its polar cone (which has its own name, the tangent
cone).

4. Normal Cone: (definition saved for a later time)

5. Polar Cone: (definition saved for a later time)



Lecture 3: Convex Sets 3-4

3.2 The Separating and Supporting Hyper-
plane Theorems

Background: (Open and Closed Sets)
Consider a set S C R"™.

Definition 3.5 (Interior Point). For a set S C R", an element of that
set x € S is an interior point if there exists an epsilon-ball around x that
1s entirely within the set S:

{y:lly—zll<ecC

Definition 3.6 (Open Set and Closed Set). A set S C R™ is open if all
points in S are interior points. A set S C R™ is closed if its complement

C¢={z eR":x ¢ C} is open.

For example, the interval (0,1) on the real line is an open set, whearas
the interval [0, 1] is a closed set. In 2D, the set of points x € R? satisfying
x1+xo > 7 is an open set, whereas the set of points satisfying x1+x9 > 7
is a closed set.

Definition 3.7 (Boundary Point). We say that a boundary point satis-
fies the property that are points both in S and not in S that are arbitrarily
close. That is, x € R™ is a boundary point of S if for alle >0, Jy € S
and 3z ¢ S such that

ly =[] < € and

|z —alls <€

Definition 3.8 (Boundary). The boundary of a set S C R™ are all
points in R™ that are boundary points.

The above definition of a boundary has two consequences of note: First,
all points in S that are not interior points are boundary points. Second,
not all boundary points are in S, e.g. an open set contains none of its
boundary points.
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We can characterize a closed set in two additional ways:
1. A set S C R" is closed if it contains all its boundary points.

2. A set S C R” is closed if for every limiting sequence of points
x1,T9, X3, ... that converges to x, r; € S = x € S.

Theorem 3.9 (Separating Hyperplane). If C' and D are non-empty con-
vex sets which are disjoint, i.e. C' N D = (), then there exists a separating
hyperplane, i.e. a,b such that,

atz <b, forallz € C,
a’z>b, for allz € D.

Notice that, it is not generally true of two disjoint nonconvex sets that there
exists a separating hyperplane.

Theorem 3.10 (Supporting Hyperplane). If C' is a non-empty convez set,
and xg € boundary(C'), then there is a vector a such that,

a’(x — 0) <0, forall x € C.

The latter has an interesting converse, if the set C is closed (check what this
means if you're not familiar with it), and has a non-empty interior, and has
a supporting hyperplane at every point then C' must be convex.
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The proofs of these theorems (at least in the case where the sets are closed
and bounded) is straightforward (and explicit) — see BV, Section 2.5 if you
are curious.

Segue... Next time, we’ll talk operations that preserve convexity of a
set and begin our discussion of convex functions.
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