10-425/625: Introduction to Convex Optimization (Fa

(Fall 2023)

Lecture 3: Convex Sets

Instructor:<sup>1</sup> Matt Gormley

September 6, 2023

## 3.1 Convex Sets (continued)

## 3.1.1 Examples of Convex Sets

**Some more examples** (again, useful to make sure you know how to verify the convexity of these sets):

8. **Polyhedra:** The set  $\{x : Ax \le b\}$  for given A, b (or equivalently, sets of the form  $\{x : Ax \le b, Cx = d\}$ ).



#### **Background**:

**Definition 3.1** (Linear independence). Vectors  $\{x_1, \ldots, x_k\}$  are linearly independent if there is no  $\lambda_1, \ldots, \lambda_k$  such that  $\sum_{i=1}^k \lambda_i x_i = 0$  except all zeros.

<sup>&</sup>lt;sup>1</sup>These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (original version: here) and were edited and adapted for 10-425/625.

**Definition 3.2** (Affine independence). Vectors  $\{x_1, \ldots, x_k\}$  are affinely independent if there is no  $\lambda_1, \ldots, \lambda_k$ , with  $\sum_{i=1}^k \lambda_i = 0$  such that  $\sum_{i=1}^k \lambda_i x_i = 0$  except all zeros.

9. Simplices: For a collection of affinely independent points  $x_1, \ldots, x_k$ , the corresponding simplex is simply the convex hull  $conv\{x_1, \ldots, x_k\}$ .

A prominent example is the probability simplex, which is the convex hull of the *d* basis vectors  $e_1, \ldots, e_d$ .

### 3.1.2 Convex Cones

Background: (Positive Definite and Positive Semidefinite) Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix.

**Definition 3.3.** The matrix A is positive semidefinite, written  $A \succeq 0$ , if  $x^T A x \ge 0$  for all  $x \in \mathbb{R}^n$ .

**Definition 3.4.** The matrix A is positive definite, written  $A \succ 0$ , if  $x^T A x > 0$  for all non-zero  $x \in \mathbb{R}^n$ .

A set C is a *cone* if for every  $x \in C$ ,  $\theta x \in C$  for any  $\theta \ge 0$ , i.e. for any point in C the ray joining that point to the origin must also be in C. Cones are not convex in general, so we will refer to *convex cones* as cones which are additionally convex.

In the example below, the two rays are a cone; whereas the shaded region is a convex cone.



It is easy to see that convex cones additionally satisfy the property that if  $x_1, x_2 \in C$  then for any  $\theta_1, \theta_2 \geq 0, \ \theta_1 x_1 + \theta_2 x_2 \in C$ . These are called *conic* 

combinations, i.e. for  $x_1, \ldots, x_k$ , a conic combination is any point of the form  $\theta_1 x_1 + \ldots + \theta_k x_k$  with  $\theta_i \ge 0$  is called a conic combination. The conic hull of a set C collects all conic combinations of points in C, and is the smallest convex cone containing C.

There are several important cones:

- 1. Norm Cone:  $\{(x,t) : ||x|| \le t\}$ . For the  $\ell_2$  norm this cone is called the second-order cone (sometimes called the ice-cream cone).
- 2. **PSD Cone:** Denoted  $\mathbb{S}^d_+ = \{X \in \mathbb{S}^d : X \succeq 0\}$ , i.e. X is a symmetric matrix, with all positive eigenvalues.
- 3. **Polar Cone:** For any cone C, the *polar* cone  $C^{\circ}$  is defined as the collection of vectors which make an atleast 90-degree angle with all vectors in C, i.e.

$$C^{\circ} = \{x : x^T y \leq 0, \text{ for all } y \in C\}.$$



There is a fundamental reason why cones will be important to us. We will use them to characterize optimality. Two cones are important in this context: the normal cone and its polar cone (which has its own name, the tangent cone).

- 4. Normal Cone: (definition saved for a later time)
- 5. **Polar Cone:** (definition saved for a later time)

# 3.2 The Separating and Supporting Hyperplane Theorems

Background: (Open and Closed Sets)

Consider a set  $S \subseteq \mathbb{R}^n$ .

**Definition 3.5** (Interior Point). For a set  $S \subseteq \mathbb{R}^n$ , an element of that set  $x \in S$  is an interior point if there exists an epsilon-ball around x that is entirely within the set S:

$$\{y: ||y-x||_2 \le \epsilon\} \subseteq C$$

**Definition 3.6** (Open Set and Closed Set). A set  $S \subseteq \mathbb{R}^n$  is open if all points in S are interior points. A set  $S \subseteq \mathbb{R}^n$  is closed if its complement  $C^c = \{x \in \mathbb{R}^n : x \notin C\}$  is open.

For example, the interval (0, 1) on the real line is an open set, whearas the interval [0, 1] is a closed set. In 2D, the set of points  $x \in \mathbb{R}^2$  satisfying  $x_1 + x_2 > 7$  is an open set, whereas the set of points satisfying  $x_1 + x_2 \ge 7$ is a closed set.

**Definition 3.7** (Boundary Point). We say that a boundary point satisfies the property that are points both in S and not in S that are arbitrarily close. That is,  $x \in \mathbb{R}^n$  is a boundary point of S if for all  $\epsilon > 0$ ,  $\exists y \in S$ and  $\exists z \notin S$  such that

$$||y - x||_2 \le \epsilon \text{ and}$$
$$||z - x||_2 \le \epsilon$$

**Definition 3.8** (Boundary). The boundary of a set  $S \subseteq \mathbb{R}^n$  are all points in  $\mathbb{R}^n$  that are boundary points.

The above definition of a boundary has two consequences of note: First, all points in S that are not interior points are boundary points. Second, not all boundary points are in S, e.g. an open set contains none of its boundary points.

We can characterize a closed set in two additional ways:

- 1. A set  $S \subseteq \mathbb{R}^n$  is closed if it contains all its boundary points.
- 2. A set  $S \subseteq \mathbb{R}^n$  is closed if for every limiting sequence of points  $x_1, x_2, x_3, \ldots$  that converges to  $x, x_i \in S \Rightarrow x \in S$ .

**Theorem 3.9** (Separating Hyperplane). If C and D are non-empty convex sets which are disjoint, i.e.  $C \cap D = \emptyset$ , then there exists a separating hyperplane, i.e. a, b such that,



Notice that, it is *not* generally true of two disjoint nonconvex sets that there exists a separating hyperplane.

**Theorem 3.10** (Supporting Hyperplane). If C is a non-empty convex set, and  $x_0 \in boundary(C)$ , then there is a vector a such that,

$$a^T(x-x_0) \le 0$$
, for all  $x \in C$ .

The latter has an interesting converse, if the set C is closed (check what this means if you're not familiar with it), and has a non-empty interior, and has a supporting hyperplane at every point then C must be convex.



The proofs of these theorems (at least in the case where the sets are closed and bounded) is straightforward (and explicit) – see BV, Section 2.5 if you are curious.

**Segue...** Next time, we'll talk operations that preserve convexity of a set and begin our discussion of convex functions.