
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 3: Convex Sets
Instructor:1 Matt Gormley September 6, 2023

3.1 Convex Sets (continued)

3.1.1 Examples of Convex Sets

Some more examples (again, useful to make sure you know how to verify
the convexity of these sets):

8. Polyhedra: The set {x : Ax ≤ b} for given A, b (or equivalently, sets
of the form {x : Ax ≤ b, Cx = d}).32 2 Convex sets
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Figure 2.11 The polyhedron P (shown shaded) is the intersection of five
halfspaces, with outward normal vectors a1, . . . . , a5.

when it is bounded). Figure 2.11 shows an example of a polyhedron defined as the
intersection of five halfspaces.

It will be convenient to use the compact notation

P = {x | Ax ≼ b, Cx = d} (2.6)

for (2.5), where

A =

⎡
⎢⎣

aT
1
...

aT
m

⎤
⎥⎦ , C =

⎡
⎢⎣

cT
1
...

cT
p

⎤
⎥⎦ ,

and the symbol ≼ denotes vector inequality or componentwise inequality in Rm:
u ≼ v means ui ≤ vi for i = 1, . . . , m.

Example 2.4 The nonnegative orthant is the set of points with nonnegative compo-
nents, i.e.,

Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n} = {x ∈ Rn | x ≽ 0}.

(Here R+ denotes the set of nonnegative numbers: R+ = {x ∈ R | x ≥ 0}.) The
nonnegative orthant is a polyhedron and a cone (and therefore called a polyhedral
cone).

Simplexes

Simplexes are another important family of polyhedra. Suppose the k + 1 points
v0, . . . , vk ∈ Rn are affinely independent, which means v1 − v0, . . . , vk − v0 are
linearly independent. The simplex determined by them is given by

C = conv{v0, . . . , vk} = {θ0v0 + · · · + θkvk | θ ≽ 0, 1T θ = 1}, (2.7)

Background:

Definition 3.1 (Linear independence). Vectors {x1, . . . , xk} are
linearly independent if there is no λ1, . . . , λk such that

∑k
i=1 λixi =

0 except all zeros.

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.
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Definition 3.2 (Affine independence). Vectors {x1, . . . , xk} are
affinely independent if there is no λ1, . . . , λk, with

∑k
i=1 λi = 0

such that
∑k

i=1 λixi = 0 except all zeros.

9. Simplices: For a collection of affinely independent points x1, . . . , xk,
the corresponding simplex is simply the convex hull conv{x1, . . . , xk}.
A prominent example is the probability simplex, which is the convex
hull of the d basis vectors e1, . . . , ed.

3.1.2 Convex Cones

Background: (Positive Definite and Positive Semidefinite)
Let A ∈ Rn×n be a symmetric matrix.

Definition 3.3. The matrix A is positive semidefinite, written A ⪰ 0,
if xTAx ≥ 0 for all x ∈ Rn.

Definition 3.4. The matrix A is positive definite, written A ≻ 0, if
xTAx > 0 for all non-zero x ∈ Rn.

A set C is a cone if for every x ∈ C, θx ∈ C for any θ ≥ 0, i.e. for any point
in C the ray joining that point to the origin must also be in C. Cones are
not convex in general, so we will refer to convex cones as cones which are
additionally convex.

In the example below, the two rays are a cone; whereas the shaded region is
a convex cone.

26 2 Convex sets
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Figure 2.4 The pie slice shows all points of the form θ1x1 + θ2x2, where
θ1, θ2 ≥ 0. The apex of the slice (which corresponds to θ1 = θ2 = 0) is at
0; its edges (which correspond to θ1 = 0 or θ2 = 0) pass through the points
x1 and x2.
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Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.

It is easy to see that convex cones additionally satisfy the property that if
x1, x2 ∈ C then for any θ1, θ2 ≥ 0, θ1x1 + θ2x2 ∈ C. These are called conic
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combinations, i.e. for x1, . . . , xk, a conic combination is any point of the form
θ1x1 + . . . + θkxk with θi ≥ 0 is called a conic combination. The conic hull
of a set C collects all conic combinations of points in C, and is the smallest
convex cone containing C.

There are several important cones:

1. Norm Cone: {(x, t) : ∥x∥ ≤ t}. For the ℓ2 norm this cone is called
the second-order cone (sometimes called the ice-cream cone).

2. PSD Cone: Denoted Sd
+ = {X ∈ Sd : X ⪰ 0}, i.e. X is a symmetric

matrix, with all positive eigenvalues.

3. Polar Cone: For any cone C, the polar cone C◦ is defined as the
collection of vectors which make an atleast 90-degree angle with all
vectors in C, i.e.

C◦ = {x : xTy ≤ 0, for all y ∈ C}.

There is a fundamental reason why cones will be important to us. We will use
them to characterize optimality. Two cones are important in this context:
the normal cone and its polar cone (which has its own name, the tangent
cone).

4. Normal Cone: (definition saved for a later time)

5. Polar Cone: (definition saved for a later time)
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3.2 The Separating and Supporting Hyper-

plane Theorems

Background: (Open and Closed Sets)

Consider a set S ⊆ Rn.

Definition 3.5 (Interior Point). For a set S ⊆ Rn, an element of that
set x ∈ S is an interior point if there exists an epsilon-ball around x that
is entirely within the set S:

{y : ||y − x||2 ≤ ϵ} ⊆ C

Definition 3.6 (Open Set and Closed Set). A set S ⊆ Rn is open if all
points in S are interior points. A set S ⊆ Rn is closed if its complement
Cc = {x ∈ Rn : x /∈ C} is open.

For example, the interval (0, 1) on the real line is an open set, whearas
the interval [0, 1] is a closed set. In 2D, the set of points x ∈ R2 satisfying
x1+x2 > 7 is an open set, whereas the set of points satisfying x1+x2 ≥ 7
is a closed set.

Definition 3.7 (Boundary Point). We say that a boundary point satis-
fies the property that are points both in S and not in S that are arbitrarily
close. That is, x ∈ Rn is a boundary point of S if for all ϵ > 0, ∃y ∈ S
and ∃z /∈ S such that

||y − x||2 ≤ ϵ and

||z − x||2 ≤ ϵ

Definition 3.8 (Boundary). The boundary of a set S ⊆ Rn are all
points in Rn that are boundary points.

The above definition of a boundary has two consequences of note: First,
all points in S that are not interior points are boundary points. Second,
not all boundary points are in S, e.g. an open set contains none of its
boundary points.
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We can characterize a closed set in two additional ways:

1. A set S ⊆ Rn is closed if it contains all its boundary points.

2. A set S ⊆ Rn is closed if for every limiting sequence of points
x1, x2, x3, . . . that converges to x, xi ∈ S ⇒ x ∈ S.

Theorem 3.9 (Separating Hyperplane). If C and D are non-empty con-
vex sets which are disjoint, i.e. C ∩ D = ∅, then there exists a separating
hyperplane, i.e. a, b such that,

aTx ≤ b, for all x ∈ C,

aTx ≥ b, for all x ∈ D.

2.5 Separating and supporting hyperplanes 47
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Figure 2.18 Three ellipsoids in R2, centered at the origin (shown as the
lower dot), that contain the points shown as the upper dots. The ellipsoid
E1 is not minimal, since there exist ellipsoids that contain the points, and
are smaller (e.g., E3). E3 is not minimal for the same reason. The ellipsoid
E2 is minimal, since no other ellipsoid (centered at the origin) contains the
points and is contained in E2.
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Figure 2.19 The hyperplane {x | aT x = b} separates the disjoint convex sets
C and D. The affine function aT x − b is nonpositive on C and nonnegative
on D.

Notice that, it is not generally true of two disjoint nonconvex sets that there
exists a separating hyperplane.

Theorem 3.10 (Supporting Hyperplane). If C is a non-empty convex set,
and x0 ∈ boundary(C), then there is a vector a such that,

aT (x− x0) ≤ 0, for all x ∈ C.

The latter has an interesting converse, if the set C is closed (check what this
means if you’re not familiar with it), and has a non-empty interior, and has
a supporting hyperplane at every point then C must be convex.
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2.6 Dual cones and generalized inequalities 51
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Figure 2.21 The hyperplane {x | aT x = aT x0} supports C at x0.

that the point x0 and the set C are separated by the hyperplane {x | aT x = aT x0}.
The geometric interpretation is that the hyperplane {x | aT x = aT x0} is tangent
to C at x0, and the halfspace {x | aT x ≤ aT x0} contains C. This is illustrated in
figure 2.21.

A basic result, called the supporting hyperplane theorem, states that for any
nonempty convex set C, and any x0 ∈ bdC, there exists a supporting hyperplane to
C at x0. The supporting hyperplane theorem is readily proved from the separating
hyperplane theorem. We distinguish two cases. If the interior of C is nonempty,
the result follows immediately by applying the separating hyperplane theorem to
the sets {x0} and intC. If the interior of C is empty, then C must lie in an affine
set of dimension less than n, and any hyperplane containing that affine set contains
C and x0, and is a (trivial) supporting hyperplane.

There is also a partial converse of the supporting hyperplane theorem: If a set
is closed, has nonempty interior, and has a supporting hyperplane at every point
in its boundary, then it is convex. (See exercise 2.27.)

2.6 Dual cones and generalized inequalities

2.6.1 Dual cones

Let K be a cone. The set

K∗ = {y | xT y ≥ 0 for all x ∈ K} (2.19)

is called the dual cone of K. As the name suggests, K∗ is a cone, and is always
convex, even when the original cone K is not (see exercise 2.31).

Geometrically, y ∈ K∗ if and only if −y is the normal of a hyperplane that
supports K at the origin. This is illustrated in figure 2.22.

Example 2.22 Subspace. The dual cone of a subspace V ⊆ Rn (which is a cone) is
its orthogonal complement V ⊥ = {y | vT y = 0 for all v ∈ V }.

The proofs of these theorems (at least in the case where the sets are closed
and bounded) is straightforward (and explicit) – see BV, Section 2.5 if you
are curious.

Segue... Next time, we’ll talk operations that preserve convexity of a
set and begin our discussion of convex functions.
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