
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 4: Convex Functions
Instructor:1 Matt Gormley September 8, 2023

4.1 Sets

Background:

Note that in last lecture, I incorrectly claimed on the chalkboard that
a boundary point was a point x ∈ S; the notes were correct though: a
boundary point is not necessarily in S, it is just a point x ∈ Rn.

Definition 4.1 (Boundary Point). We say that a boundary point satis-
fies the property that are points both in S and not in S that are arbitrarily
close. That is, x ∈ Rn is a boundary point of S if for all ϵ > 0, ∃y ∈ S
and ∃z /∈ S such that

||y − x||2 ≤ ϵ and

||z − x||2 ≤ ϵ

Definition 4.2 (Boundary). The boundary of a set S ⊆ Rn are all
points in Rn that are boundary points.

The above definition of a boundary has two consequences of note: First,
all points in S that are not interior points are boundary points. Second,
not all boundary points are in S, e.g. an open set contains none of its
boundary points.

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.
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https://www.stat.cmu.edu/~siva/teaching/725/
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4.2 Operations which Preserve Convexity of

a Set

There are some important operations which preserve convexity of sets:

1. Intersection: The intersections of convex sets is a convex set.

2. Scaling and Translation: If C is convex, then

aC + b := {ax+ b : x ∈ C},

is convex for any a, b ∈ R.

3. Affine Images and Pre-Images: Let us define f(x) = Ax + b to
be an affine function. If C is a convex set, then, the affine image

f(C) = {f(x) : x ∈ C}

is also a convex set. Also, the affine pre-image

f−1(C) = {x : f(x) ∈ C},

is a convex set.

There are a couple more that are more involved but useful to know (we may
not have time to cover this in lecture, in which case we will re-visit it when
we need it).

4. Perspective: The perspective function P : Rd × R++ 7→ R (where
R++ is the strictly positive reals), is defined as:

P (x, t) = x/t.

If C ⊆ dom(P ) is a convex set, then its image P (C) is a convex set,
and similarly if D is convex then P−1(D) is convex.

5. Linear-Fractional: The linear fractional function for a given A, b, c, d
is given by:

f(x) =
Ax+ b

cTx+ d
.

If C ⊆ dom(f) is a convex set, then its image f(C) is a convex set, and
similarly if D is convex then f−1(D) is convex.
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Example 4.3. Conditional Probability Set: This is an example
of using the linear-fractional image to characterize convexity. Let U, V
be random variables over {1, . . . , n} and {1, . . . ,m}. Let C ⊆ Rnm

be a set of joint distributions for U, V , i.e., each p ∈ C defines joint
probabilities

pij = P(U = i, V = j)

Let D ⊆ Rnm contain corresponding conditional distributions, i.e., each
q ∈ D defines

qij = P(U = i|V = j)

Assume C is convex. Let’s prove that D is convex. Write

D =
{
q ∈ Rnm : qij =

pij∑n
k=1 pkj

, for some p ∈ C
}
= f(C)

where f is a linear-fractional function, hence D is convex.
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4.3 Convex Functions

Background: (Writing Dot Products) There are three ways of writ-
ing the dot product of two vectors x, y ∈ Rn:

x · y = xTy = ⟨x, y⟩

Background: (Gradient and Hessian) Suppose we have a function
f : Rn → R. The gradient of f is a vector g = ∇f(x) ∈ Rn who entries
are the first-order partial derivatives of the function, i.e., gi = [∇f(x)]i =
∂f(x)
∂xi

.

The Hessian of f is a symmetric matrix H = ∇2f(x) ∈ Rn×n, whose
entries are the second-order partial derivatives of the function, i.e., Hi,j =

[∇2f(x)]i,j =
∂f(x)
∂xi∂xj

.

Background: (Taylor Series Approximation) Given a function f :
Rn → R, its first-order Taylor series approximation at a given point
y ∈ Rn is:

f(x) ≈ T1st(x) = f(y) + ⟨∇f(y), x− y⟩

The second-order Taylor series approximation involves the gradient and
the Hessian H = ∇2f(x):

f(x) ≈ T2nd(x) = T1st(x) +
1

2
(x− y)TH(x− y)

There are three characterizations of convexity that you should be familiar
with:

1. No Assumptions (Zeroth-Order): This is the definition we dis-
cussed last time, i.e. f is convex if its domain is a convex set and, for
any x, y ∈ dom(f),

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

2. Differentiable (First-Order): Suppose our function f has a deriva-
tive (at all points in its domain) then, f is convex if its domain is a
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convex set and, for any x, y ∈ dom(f),

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩.

3. Twice Differentiable (Second-Order): A function f is convex, if
its domain is a convex set and, for any x ∈ dom(f),

∇2f(x) ⪰ 0.

It is also worth noting that there is a definition analogous to (2) above in the
case when the function is not differentiable everywhere.

2’. Non-Smooth: A function f is convex if its domain is a convex set,
and if at every point x ∈ dom(f), there exists a vector gx such that,
for any y ∈ dom(f),

f(y) ≥ f(x) + ⟨gx, y − x⟩.

It is worth noting that if f is differentiable at x, then there is only one
vector which will satisfy the above definition and it will coincide with
the usual gradient, i.e. gx = ∇f(x).

Any gx which satisfies the above property is called a subgradient of f at
x. The set of all subgradients at a point x is called the subdifferential
of f at x and it will be denoted as ∂f(x).

Except for some very pathological functions (and only at the bound-
ary of their domain) subgradients always exist. Formally, one can for
instance show that a subgradient gx of a convex function f at x exists
if x is in the interior of their domain.

Notational Note: I will often stop adding the qualifiers “for x, y ∈
dom(f)”. One way to make this precise (I, and most textbooks do this
implicitly) is to allow f to be whats called an extended function, and define
it to be ∞ outside its (effective) domain. This won’t change any of its con-
vexity properties, and things like the first and zeroth-order characterizations
will now make sense for any x, y ∈ Rd.
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4.3.1 Example: A Quadratic Objective

Let us consider the quadratic function

f(x) =
1

2
xTQx+ aTx+ b

where Q ⪰ 0. Consider its derivatives:

∇f(x) = Qx+ a

∇2f(x) = Q

Applying definition (3) is easiest, since ∇2f(x) = Q and this is PSD.

Now, let us try to apply definition (2). It is a differentiable function, with
gradient ∇f(x) = Qx+ a. So we need to verify if,

1

2
yTQy + aTy + b

?

≥ 1

2
xTQx+ aTx+ b+ ⟨Qx+ a, y − x⟩.

Re-arranging we obtain that we need to check if,

1

2
(y − x)TQ(y − x) ≥ 0,

which is certainly the case since Q ⪰ 0.

Finally, let us try to apply definition (1). We see (after cancelling some
terms) that we need to verify if for 0 ≤ θ ≤ 1,

1

2
(θx+ (1− θ)y)T Q (θx+ (1− θ)y)

?

≤ θ

2
xTQx+

1− θ

2
yTQy.

Now, use the fact (you should see how you might prove this fact) that,
xTQy ≤ 1

2

[
xTQx+ yTQy

]
for PSD Q (this is the matrix analogue of the

simple fact that ab ≤ (a2+ b2)/2), to verify that the desired inequality holds.

4.3.2 More Examples of Convex Functions

Here are a few examples of convex functions:

1. exp(ax) is convex for any a over R.

2. log x is concave on R++.
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3. aTx+ b is convex (and concave).

4. The least squares loss ∥Ax− b∥2 is convex (for any A, b).

5. Any norm is convex, i.e. ∥x∥ is a convex function.

6. The spectral norm, and the trace norm of a matrix are convex, i.e.
∥X∥op = σ1(X), ∥X∥tr =

∑d
i=1 σi(X) where σi(X) denotes the i-th

singular value of X.

7. Convex Indicators: If C is a convex set, then the indicator function
(which is defined on the extended reals):

IC(x) =

{
0 x ∈ C

∞ x /∈ C.

is convex.

4.4 Operations which Preserve Convexity of

a Function

1. Non-negative Linear Combination: Suppose f1, . . . , fm are con-
vex, then so is

∑m
i=1 aifi for any a1, . . . , am ≥ 0.

2. Pointwise Max: If the collection of functions fs for s ∈ S are convex,
then so is g(x) = sups∈S fs(x).

3. Partial Minimization: If g(x, y) is a convex function in Rn+m where
x ∈ Rn and y ∈ Rm, and C ⊆ Rm is a convex set, then f(x) =
miny∈C g(x, y) is a convex function.

An Example:

• Suppose C is an arbitrary set, consider f(x) = maxy∈C ∥x − y∥.
Intuitively, f tells us how far x is from the farthest point in C.
f is convex. To see this, we can view f as a maximum of convex
functions fy(x) = ∥x− y∥.

• Let C be a convex set, consider f(x) = miny∈C ∥x−y∥. Intuitively,
f tells us how far x is from the closest point in C. f is convex. We
can view this as a partial minimization of the function g(x, y) =
∥x− y∥ which is a convex function (in (x, y)).
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Function compositions:

4. Affine Composition: If f is convex then so is g(x) = f(Ax+ b).

5. General Composition: Suppose that f = h ◦ g, where g : Rd 7→ R,
h : R 7→ R, f : Rd 7→ R. Then one can ask when f is convex. There
are many cases to cover (see BV) but we’ll simply study one, and try
to understand where it comes from: f is convex if h is convex and
nondecreasing, g is convex.

Proof: To see this: imagine everything was twice differentiable, then
by the chain rule

f ′(x) = h′(g(x))g′(x) f ′′(x) = h′′(g(x))(g′(x))2 + h′(g(x))g′′(x).

When h is convex and non-decreasing, h′′ and h′ are positive, and when
g is convex, g′′ is positive, so f ′′ is positive.

4.5 Example: Support Vector Machines (SVMs)

4.5.1 Data

Suppose we have a dataset D = {x(i), y(i)}Ni=1 where x(i) ∈ Rm and y(i) ∈
{+1,−1}. We wish to learn a linear decision boundary separating the points
i labeled +1 from those labeled −1.

4.5.2 SVM Mathematical Programs

One way to do this is with a support vector machine (SVM), which finds the
linear decision boundary with largest margin. We’ll consider two versions:

Hard-margin SVM (Primal)

min
w,b

1

2
∥w∥22

s.t. y(i)(wTx(i) + b) ≥ 1, ∀i = 1, . . . , N
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Soft-margin SVM (Primal)

min
w,b

1

2
∥w∥22 + C

(
N∑
i=1

ei

)
s.t. y(i)(wTx(i) + b) ≥ 1− ei, ∀i = 1, . . . , N

ei ≥ 0, ∀i = 1, . . . , N
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