10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 5: Properties of Convex Functions

Instructor: 1 Matt Gormley

September 13, 2023

5.1 Properties of Convex Functions

5.1.1 Convexity and Monotonicity

One nice property of convex functions is that their gradients are monotone.

5.1.1.1 Monotonicity in 1D

Definition 5.1 (Monotone Increasing Function). In 1D this is a simple thing to interpret, a monotone function is order preserving. A function which is monotone increasing has the property that if $x \ge y$ then $f(x) \ge f(y)$.

One way to write this mathematically is to say that for any x, y,

$$(x - y) \times (f(x) - f(y)) \ge 0.$$

5.1.1.2 Monotonicity of Gradients

For a differentiable convex function f, the multivariate analogue is that for any $x, y \in \text{dom}(f)$:

$$(x-y)^T(\nabla f(x) - \nabla f(y)) \ge 0.$$

Proof: To see this we observe that by the first-order characterization:

$$f(y) \ge f(x) + \langle \nabla f(x), (y - x) \rangle$$

$$f(x) \ge f(y) + \langle \nabla f(y), (x - y) \rangle,$$

and summing these inequalities gives our desired result: $\langle x-y, \nabla f(x) - \nabla f(y) \rangle \geq 0$.

 $^{^{1}}$ These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (original version: here) and were edited and adapted for 10-425/625.

The (sub)gradient of a convex function satisfies a multivariate analogue of this property. Particularly for any $x, y \in \text{dom}(f)$, if f is convex we have that for any $g_x \in \partial f(x)$ and $g_y \in \partial f(y)$,

$$(x-y)^T(g_x-g_y) \ge 0.$$

Proof: To see this we observe that by the first-order characterization:

$$f(y) \ge f(x) + g_x^T(y - x),$$

 $f(x) \ge f(y) + g_y^T(x - y),$

and summing these inequalities gives our desired result: $(x-y)^T(g_x-g_y) \ge 0$.

It turns out that there is a converse to the above characterization. If you have a differentiable function whose gradient is monotone, then it must be convex.

5.1.2 Other Properties

Here are a few properties of convex functions that will be useful:

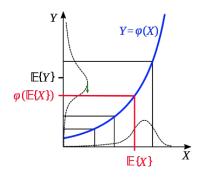
1. A function is convex iff its epigraph,

$$\operatorname{epi}(f) = \{(x, t) \in \operatorname{dom}(f) \times \mathbb{R} : f(x) \le t\}$$

is a convex set. In simpler terms: if you take all the points that lie above a function, those form a convex set.

Interesting note: There is an connection here between the supporting hyperplane of this epigraph (set) and subgradients, most easily shown with a picture.

- 2. A function is convex iff the univariate functions g(t) = f(x + tv) are convex for any $v \in \mathbb{R}^d$, and for any $x \in \text{dom}(f)$.
- 3. Convex functions satisfy Jensen's inequality. If f is convex, then for any random variable X supported on dom(f), $f(\mathbb{E}[X]) \leq \mathbb{E}f(X)$.



5.2 Smooth, Strongly Convex and Strictly Convex Functions

For this section, we will switch back to thinking about differentiable convex functions.

5.2.1 Strict Convexity

Strict convexity is a "weakening" of strong convexity (we won't use it so much in this course but it's a useful concept to be aware of). A function f is strictly convex if either:

1.
$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$
 for $0 < \theta < 1$.

2.
$$f(y) > f(x) + \nabla f(x)^T (y - x)$$
, for any $x \neq y$.

It is worth noting the second-order characterization doesn't work in the expected way, i.e. you can have twice-differentiable, strictly convex functions which don't satisfy the condition that $\nabla^2 f(x) > 0$. (As an example, think about the function x^4 at x = 0.)

For a strictly convex function, we are guaranteed that its minimizer is *unique* if it exists. That is, a strictly convex function has at most one local minimum.

Background: (Continuous, Lipschitz continuous)

Definition 5.2 (Continuous Function). A function $f: \mathbb{R}^n \to \mathbb{R}$ is con-

tinuous at a point $y \in dom(f)$ iff

$$f(y)$$
 exists
 $\lim_{x \to y} f(x)$ exists
 $\lim_{x \to y} f(x) = f(y)$.

Intuitively, this means the function consists of one curve without any breaks over the reals. If a function $f: \mathbb{R}^n \to \mathbb{R}$ is continuous over all points $y \in \mathbb{R}^n$, then it is a continuous function.

Definition 5.3 (Continuously Differentiable). A function $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable if its gradient $\nabla f(x)$ exists and each of its partial derivatives $\frac{\partial f(x)}{\partial x_i}$ is a continuous function at all points x.

Definition 5.4 (Lipschitz Continuous). A 1D function $f : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous if there exists a constant $L \in \mathbb{R}$ such that for all $x, y \in \mathbb{R}$:

$$|f(x) - f(y)| \le L|x - y|$$

That is, the difference of the rate of change of the function from the beginning to the end of some interval is bounded by a constant factor of the interval size, for all size intervals.

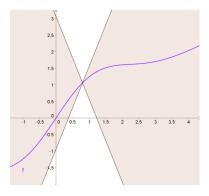
More generally, a function $f: \mathbb{R}^n \to \mathbb{R}$ is Lipschitz continuous if there exists a constant $L \in \mathbb{R}$ such that for all $x, y \in \mathbb{R}$:

$$||f(x) - f(y)|| \le L||x - y||$$

The above holds for any norm $\|\cdot\|$, but we can assume we're working with the ℓ -2 norm. We say that such a function is L-Lipschitz.

We can understand Lipschitz continuity at a point x geometrically, by considering two cones: an upper cone and a lower cone sitting above and below f(x) at x respectively. The two cones are defined by all lines whose slope obeys $\frac{\|f(x)-f(y)\|}{\|x-y\|} \leq L$. Roughly, if for all x the function never enters the upper or lower cones then it must be L-Lipschitz.

A smaller Lipschitz constant L means a wider pair of cones, indicating slower growth or change. Conversely, a larger Lipschitz constant L means steeper cones, indicating faster growth or change.



Any function that is Lipschitz continuous is also continuous.

Example 5.5. Some examples of functions that are *not* Lipschitz continuous are those that grow very rapidly, such as $f(x) = \exp(x)$ and $f(x) = x^2$, both of which become arbitrarily steep as $x \to \infty$.

5.2.2 Smoothness

In optimization smoothness has a very particular meaning (it has a slightly different meaning in stats, and other areas of math).

Definition 5.6 (β -Smooth). A function f is β -smooth, if its gradient is Lipschitz continuous with parameter β , i.e. for any $x, y \in dom(f)$,

$$\|\nabla f(x) - \nabla f(y)\|_2 \le \beta \|x - y\|_2.$$

There are several useful implications of smoothness that we will briefly discuss now:

1. Another implication of smoothness, is that it implies a quadratic upper bound on the function, i.e. if f is β -smooth then,

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||y - x||^2.$$

To interpret this fix a point x. Convex functions always lie *above* their tangent lines (i.e. $f(y) \ge f(x) + \nabla f(x)^T (y-x)$). Smooth convex

functions always lie *below* a parabola which passes through the point (x, f(x)) (defined by the RHS above).

2. Suppose x^* is a minimum of a β -smooth function f, then for all $y \in \text{dom}(f)$

$$\|\nabla f(y)\|_2 \le \beta \|y - x\|_2$$

That is, if we are at a point y that is close to the minimum x^* , then the gradient at y, $\nabla f(y)$ must also be small. So any algorithm we have that follows the gradients of the functions should intuitively slow down as it approaches the minimum.

3. Finally, if f is twice differentiable, then β -smoothness is equivalent to the condition that,

$$0 \leq \nabla^2 f(x) \leq \beta I_d$$
.

where the lower bound $0 \leq$ comes from convexity of f and the upper bound $\leq \beta I_d$ comes from β -smoothness of f.

4. If f is β -smooth then the function $\frac{\beta}{2}||x||^2 - f(x)$ is convex. Typically, we would not expect -f(x) to be convex (except when f is affine).

Segue... Next time we'll pick up with some examples of β -smooth functions and then look at strong convexity.