
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 6: Optimality Conditions
Instructor:1 Matt Gormley September 13, 2023

6.1 Smooth, Strongly Convex and Strictly Con-

vex Functions

6.1.1 Smoothness

Recall from a previous lecture

In optimization smoothness has a very particular meaning (it has a slightly
different meaning in stats, and other areas of math).

Definition 6.1 (β-Smooth). A function f is β-smooth, if its gradient is
Lipschitz continuous with parameter β, i.e. for any x, y ∈ dom(f),

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2.

There are several useful implications of smoothness that we will briefly discuss
now:

1. Another implication of smoothness, is that it implies a quadratic upper
bound on the function, i.e. if f is β-smooth then,

f(y) ≤ f(x) +∇f(x)T (y − x) +
β

2
∥y − x∥2.

To interpret this fix a point x. Convex functions always lie above their
tangent lines (i.e. f(y) ≥ f(x) + ∇f(x)T (y − x)). Smooth convex
functions always lie below a parabola which passes through the point
(x, f(x)) (defined by the RHS above).

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.
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2. Suppose x∗ is a minimum of a β-smooth function f , then for all y ∈
dom(f)

∥∇f(y)∥2 ≤ β∥y − x∥2

That is, if we are at a point y that is close to the minimum x∗, then
the gradient at y, ∇f(y) must also be small. So any algorithm we have
that follows the gradients of the functions should intuitively slow down
as it approaches the minimum.

3. Finally, if f is twice differentiable, then β-smoothness is equivalent to
the condition that,

0 ⪯ ∇2f(x) ⪯ βId.

where the lower bound 0 ⪯ comes from convexity of f and the upper
bound ⪯ βId comes from β-smoothness of f .

4. If f is β-smooth then the function β
2
∥x∥2 − f(x) is convex. Typically,

we would not expect −f(x) to be convex (except when f is affine).

Examples: It is worth briefly considering two examples (canonical exam-
ples of non-smooth and smooth convex functions):

1. Absolute value: Here we consider f(x) = |x|, and observe that
at x = 0, it’s impossible to seat a parabola at the origin which is
always above the function. Roughly, a parabola must have close to
zero derivative near its minimum, but the absolute value function has
constant derivative near its minimum.

2. Quadratic function: Suppose we consider f(x) = xTQx + aTx + b
where Q ⪰ 0. Its now easy to see that this function has Hessian 2Q,
and consequently it satisfies smoothness for any β ≥ 2λmax(Q) (i.e.
twice the largest eigenvalue of Q).

Background: For any positive semidefinite (PSD) matrix A ∈
Rn×n, written A ⪰ 0, we have that ∀x ∈ R, xTAx ≥ 0 and all its
eigenvalues are non-negative λmin(A) ≥ 0.

PSDmatrices also enjoy some convenient properties regarding eigen-
values.
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If we have two PSD matrices 0 ⪯ A and 0 ⪯ B with A,B ∈ Rn×n,
their sum C = A + B is also PSD. We can bound the eigenvalues
of matrix C:

λmin(C) ≤ λmin(A) + λmin(B)

λmax(C) ≥ λmax(A) + λmax(B)

We can show this by examining the Rayleigh quotient of C. The
Rayleigh quotient R(x;A) = xTAx

xT x
for any PSD matrix (actually

for any Hermitian matrix) is bounded by the largest and smallest
eigenvalues of A, i.e. R(x;A) ∈ [λmin(A), λmax(A)].

6.1.2 Strong Convexity

The twin assumption to smoothness is strong convexity.

Definition 6.2 (α-Strongly Convex). A function f is α-strongly convex, if
the function g(x) = f(x)− α

2
∥x∥2 is convex.

As with smoothness there are several important implications of strong con-
vexity that you will explore in your HW.

1. If f is strongly convex then an equivalent definition is that it satisfies
the following inequality for any x, y ∈ dom(f),

f(y) ≥ f(x) +∇f(x)T (y − x) +
α

2
∥y − x∥2.

Again to interpret this, fix a point x, and observe that this expression
tells us that a strongly-convex function is above a parabola which passes
through the point (x, f(x)).

2. If f is twice differentiable, an equivalent characterization is that,

∇2f(x) ⪰ αId.

Examples:

1. Absolute value: Consider the same function as before. It is not
strongly convex. For instance, if we consider x = 1, y = 2, then f(y)−
(f(x)+∇f(x)T (y−x)) is 0, so the definition can only hold with α = 0.
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2. Quadratic function: Once again using the second-order character-
ization of strong convexity we see that the quadratic function satisfies
the definition of strong convexity for any α ≤ 2λmin(Q).

It is possible to have strongly convex functions which are not smooth and vice
versa, and it is worth trying to “draw” some examples to convince yourself
of this.

6.2 The Tangent Cone and Normal Cone

There is a fundamental reason why cones will be important to us. We will use
them to characterize optimality. Two cones are important in this context:
the normal cone and its polar cone (which has its own name, the tangent
cone).

1. Normal Cone: Given a set C, and a point x ∈ C the normal cone
of C at x is defined as:

NC(x) = {g : gT (y − x) ≤ 0, for all y ∈ C}.

It is important to make sense of the following figure (for clarity in the
figure, the normal cone NC(x) has been translated to x).

●

●

●

●

There are three different types of points for which we should understand
what the normal cone looks like: (1) Interior points (the normal cone
is empty), (2) Boundary points where the boundary is smooth (the
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normal cone is a single ray) (3) Boundary points where the boundary
is not smooth (the normal cone is “fat”).

Even if C is not convex this cone is a convex cone (think about how
you might show this).

2. Tangent Cone: For convex sets the polar of the normal cone is the
tangent cone, i.e. TC(x) = NC(x)

◦. In this case, the tangent cone is a
convex cone.

More generally (i.e. for non-convex sets) the tangent cone is defined
to be the set of feasible (limiting) directions, i.e. roughly directions
along which you can move and stay in the set C. This is possibly the
more intuitive way of thinking about the tangent cone at a point (it is
simply the set of feasible directions we can move and stay in the set).
For general sets C, the tangent cone need not be convex.

Segue... Next we will consider optimality conditions, but for now we’ll
just summarize the punchline: in a convex optimization problem, a point
x will be optimal if the negative gradient belongs to NC(x), i.e. roughly
if the direction we’d like to move makes at least a 90-degree angle with
every direction that we can move in.

6.3 Optimality Conditions

Here we will revisit some things we discussed briefly in the previous lecture.
Here is the basic question. We are interested in solving a problem:

min
x∈C

f(x),

where f is a convex function, and C is a convex set. What can I say about
a solution x∗ to this problem?

1. Unconstrained Case: Suppose first that C = Rd, and that dom(f) =
Rd then our characterization should be familiar to us from usual cal-
culus classes.

Theorem 6.3. x∗ is optimal, if (and only if) 0 ∈ ∂f(x∗).
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Proof: If 0 ∈ ∂f(x∗), then from the first-order condition we know
that,

f(y) ≥ f(x∗) + 0T (y − x∗) = f(x∗).

Conversely, if x∗ is optimal, then f(y) ≥ f(x∗) and we know that,
f(y) ≥ f(x∗)+ gTx∗(y−x∗) for all y, when gx∗ = 0 and so we know that
0 is valid subgradient at x∗.

2. Constrained, Differentiable Case: Now suppose that C ⊂ Rd and
we wish to solve the constrained optimization problem: minx∈C f(x).
Recall that the minimum of the function within C might be different
than the minimum of the unconstrained function. So the gradient might
not be zero. We need a new notion of optimality to cover this case.

A feasible point x∗ is optimal, if and only if ∇f(x∗)T (y − x∗) ≥ 0 for
all y ∈ C.

We will only verify one direction of this (the other direction requires
a bit of analysis to check). Suppose that, ∇f(x∗)T (y − x∗) ≥ 0 for all
y ∈ C, then from the first-order condition we have that,

f(y) ≥ f(x∗) +∇f(x∗)T (y − x∗) ≥ f(x∗),

so f(y) ≥ f(x∗) and x∗ is optimal.

If you recall the definition of the normal cone, then you will see that
this condition says that,

−∇f(x∗) ∈ NC(x
∗).

Consider three cases of optimality corresponding to the three cases we
discussed with normal cones:

(a) x∗
1 inside C: the gradient vanishes.

(b) x∗
2 at a point where the boundary of C is smooth: the gradient is

orthogonal to the supporting hyperplane, i.e. a single ray.

(c) x∗
3 at a non-smooth boundary point of C: the gradient is within

the corresponding normal cone, which is wide.
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3. General, Constrained Case: Now we consider the case where the
function is nondifferentiable.

A feasible point x∗ is optimal, if and only if 0 ∈ ∂f(x∗)+NC(x
∗). Here

we are adding two sets, i.e. C +D = {y : y = u+ v, u ∈ C, v ∈ D}.

We leave one direction of the proof here in the lecture notes, but might
not cover this in detail. Again it’s only easy to verify one direction of
this, i.e. suppose that 0 ∈ ∂f(x∗) +NC(x

∗), this means that there are
two vectors u ∈ ∂f(x∗) and v ∈ NC(x

∗) such that,

u+ v = 0.

Now, we know that for any y which is feasible,

f(y) ≥ f(x∗) + uT (y − x∗)

= f(x∗)− vT (y − x∗).

Since v ∈ NC(x
∗) we know that vT (y−x∗) ≤ 0 for every feasible y, and

so we conclude that f(y) ≥ f(x∗).
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