
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 8: Convergence of Gradient Descent
Instructor:1 Matt Gormley September 20, 2023

8.1 Gradient Descent

Recall from a previous lecture

Recall the gradient descent algorithm:

• Choose initial point x0 ∈ Rn

• Repeat:
xt+1 = xt − ηt∇f(xt), t = 1, 2, 3, . . .

• Stop when ∥∇f(xt)∥22 is small

8.2 Two Canonical Examples

It is worth studying gradient descent in two simple analytical examples to
understand the type of behavior we might expect.

8.2.1 Problem 1: Least Squares

Suppose we are solving a least squares problem:

min
1

2
∥Ax− b∥22,

where S := ATA has finite condition number, i.e.

κ(S) =
λmax(S)

λmin(S)
< ∞.

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.
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https://www.stat.cmu.edu/~siva/teaching/725/
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This is equivalent to saying our problem is both smooth and strongly convex
(the most favorable case for GD).

Here we know the solution in closed form:

x̂ = (ATA)−1AT b,

and in particular we can write x̂ as the (only) solution to the linear system
(ATA)x̂ = AT b—this system of equations is called the normal equations.
However, we might wish to avoid computing and inverting the covariance
matrix, and instead simply use GD on the least squares objective.

Now, observe that the gradient of the objective, is ∇f(x) = −AT (b−Ax) so
that, the gradient descent iteration is simply,

xt+1 = xt + ηAT (b− Axt)

= xt − ηAT (Axt − b)

= xt − ηATAxt + ηAT b.

Subtracting x̂ from both sides, and substituting the left side of the normal
equations for AT b from above, then rearranging, we can see that,

xt+1 − x̂ = xt − x̂− ηATAxt + ηAT b

= xt − x̂− ηATAxt + η(ATA)x̂

=
[
I − η(ATA)

]
(xt − x̂).

We can unroll this to see that after k time steps xk satisfies,

xk − x̂ =
[
I − η(ATA)

]k
(x0 − x̂),

as a direct consequence we see that,

∥xk − x̂∥2 ≤ ∥I − η(ATA)∥kop∥x0 − x̂∥2.

So if we can ensure that the operator norm term < 1 we will have rapid (ge-
ometric) decay of the distance between our iterate and the optimal solution.
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Background: (Operator Norm) For a square matrix A ∈ Rn×n, the
operator norm is given by:

∥A∥op = inf{c ≥ 0 : ∥Ax∥2 ≤ c∥x∥2,∀x ∈ Rn}

For any square matrix A, the operator norm ∥A∥op is equal to the largest
singular value of the matrix A.

For any symmetric matrix A, the operator norm ∥A∥op is equal to the
largest eigenvalue (since, for any symmetric matrix, the largest singular
value equals the largest eigenvalue).

Some useful properties of the operator norm:

• ∥Ax∥2 ≤ ∥A∥op∥x∥2,∀x ∈ Rn

• ∥cA∥op = |c|∥A∥op, ∀c ∈ R

• ∥A+B∥op ≤ ∥A∥op + ∥B∥op, for square matrices A,B

• ∥AB∥op ≤ ∥A∥op∥B∥op, for square matrices A,B

Let us denote ATA := S. Now, one can check the following fact: if we choose
η = 2

λmax(S)+λmin(S)
(this is some ideal choice that we won’t have access to

in practice, but will help us in theory) then ∥I − η(ATA)∥op = (λmax(S) −
λmin(S))/(λmax(S) + λmin(S)) = (κ(S)− 1)/(κ(S) + 1) < 1 and we see that,

∥xk − x̂∥2 ≤
(
κ− 1

κ+ 1

)k

∥x0 − x̂∥2.

Some notes about this result:

1. We might sometimes (often) care instead about the value of the ob-
jective function at our iterates i.e. we would like to upper bound
f(xk) − f(x̂). For nice quadratics its easy to obtain a bound on this
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error from a bound on ∥xk − x̂∥2. Some algebra will show that,

f(xk)− f(x̂) =
(xk − x̂)TATA(xk − x̂)

2

≤ λmax(S)

2
∥xk − x̂∥22

≤ λmax(S)

2

(
κ− 1

κ+ 1

)2k

∥x0 − x̂∥22.

2. This type of convergence is often called linear convergence in optimiza-
tion (and sometimes called geometric convergence). A consequence of
the above statement is that if I want my error to be ≤ ϵ then it suffices
to take k ∼ log(1/ϵ) steps (ignoring constants which depend on how
far you initialize, and the condition number of S).

8.2.2 Problem 2: Univariate Absolute Value

Another prototypical example is applying (sub)GD to the (univariate) func-
tion f(x) = |x|. Suppose that we initialize at some point x0 = −1, and use
some constant step-size η = 0.7 (ignoring for now the non-differentiability at
0). We can see that in general the GD iterates will bounce around the opti-
mum, and will not converge. The iterates will be xt = −1,−0.3,−0.4,−0.3.
A picture is easier to follow.

In this case, the only way to “force” GD to converge will be to use a decaying
step-size (or if we want to get to within ϵ of the optimum we should use
a step-size that is smaller than that), and this will result in much slower
convergence.

This is one of the main problems of trying to optimize functions which are
not smooth.

8.3 GD Convergence Results

For the rest of this lecture, we’ll assume that our objective function f is
twice-differentiable and β-smooth. Our goal will be to try to understand the
behaviour of GD in three settings which are increasingly “nicer”:
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1. Arbitrary (possibly non-convex) function f which is twice-differentiable
and β-smooth.

2. Convex function f which is twice-differentiable and β-smooth.

3. Convex function f which is twice-differentiable and β-smooth, and is
additionally α-strongly convex.

Most of these results don’t require twice-differentiability but the proofs are
sometimes a bit more transparent when you do have twice-differentiability.

Definition 8.1 (ϵ-suboptimal). For an optimization problem with minimizer
x∗, a point x is ϵ-suboptimal if

f(x)− f(x∗) ≤ ϵ

Definition 8.2 (ϵ-substationary). A point x is ϵ-substationary if

∥∇f(x)∥2 ≤ ϵ

This could occur near a saddle point, a local minimum, or a local maximum
where the gradient is exactly zero.

8.3.1 Analysis for smooth, (possibly) nonconvex case

Assume f is differentiable, possibly nonconvex, and β-smooth. Recall that
the latter means that ∇f(x) is Lipschitz with constant β > 0:

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2 for any x, y

Or, equivalently, when twice differentiable: ∇2f(x) ⪯ LI.

Under these assumptions, asking for ϵ-suboptimality is too much. Let’s settle
for a ϵ-substationary point x, which means ∥∇f(x)∥2 ≤ ϵ.

Theorem 8.3. Gradient descent with fixed step size η ≤ 1/β satisfies

min
t=0,...,k

∥∇f(x(t))∥2 ≤

√
2β

η
(f(x(0))− f(x∗))

Thus gradient descent has rate O(1/
√
k), or O(1/ϵ2), even in the nonconvex

case for finding stationary points.
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This rate cannot be improved (over class of differentiable functions with Lip-
schitz gradients) by any deterministic algorithm.

8.3.2 Analysis for smooth, convex case

Assume that f convex and differentiable, with dom(f) = Rn, and addition-
ally that f is β-smooth.

Theorem 8.4. Gradient descent with fixed step size η ≤ 1/β satisfies

f(x(k))− f(x∗) ≤ β

2k
∥x(0) − x⋆∥22

We say gradient descent has convergence rate O(1/k). That is, it finds ϵ-
suboptimal point in O(1/ϵ) iterations.

8.3.3 Analysis for smooth, strongly convex case

Reminder: strong convexity of f means f(x) − α
2
∥x∥22 is convex for some

α > 0 (when twice differentiable: ∇2f(x) ⪰ αI).

Assuming Lipschitz gradient as before, and also strong convexity:

Theorem 8.5. Gradient descent with fixed step size η ≤ 2/(α + β) or
with backtracking line search search satisfies

f(x(k))− f(x∗) ≤ γkβ

2
∥x(0) − x⋆∥22

where 0 < γ < 1

Rate under strong convexity is O(γk), exponentially fast! That is, it finds
ϵ-suboptimal point in O(log(1/ϵ)) iterations.
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