
HOMEWORK 1
CONVEX SETS AND CONVEX FUNCTIONS *

10-425/10-625 INTRODUCTION TO CONVEX OPTIMIZATION
http://425.mlcourse.org

OUT: Sep. 7, 2023
DUE: Sep. 17, 2023

TAs: Roochi and Akash

Instructions
• Collaboration Policy: Please read the collaboration policy in the syllabus.

• Late Submission Policy: See the late submission policy in the syllabus.

• Submitting your work: You will use Gradescope to submit answers to all questions and code.

– Written: You will submit your completed homework as a PDF to Gradescope. For each prob-
lem, please clearly indicate the question number (e.g. 3.2). Submissions can be handwritten,
but must be clearly legible; otherwise, you will not be awarded marks. Alternatively, submis-
sions can be written in LATEX. You may use the LATEX source of this assignment (included in the
handout .zip) as your starting point. For multiple choice / select all questions, simply write the
letter(s) (e.g. A, B, C) corresponding to your chosen answer.

– Programming: You will submit your code for programming questions to Gradescope. There is
no autograder. We will examine your code by hand and may award marks for its submission.

• Materials: The data and reference output that you will need in order to complete this assignment is
posted along with the writeup and template on the course website.

Question Points

Optimization Basics 5

Convex Sets 26

Convex Functions 27

Characterizations of Convexity 10

Optimization with CVX 27

Collaboration Questions 2

Total: 97

*Compiled on Thursday 7th September, 2023 at 15:12
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1 Optimization Basics (5 points)
1.1. (1 point) True or False: For a convex optimization problem with objective function f , where x is

a local minimum and x∗ a global minimum, f(x) may be greater than f(x∗).

A. True

B. False

1.2. (1 point) True or False: If f(x) : R → R is a convex function, then the following is a valid
constraint in a convex optimization problem: sin(x) ≤ 0

A. True

B. False

1.3. (2 points) Select all that apply: Given A ∈ Rm×n, b ∈ Rn, c ∈ Rm, and f(x) = A(x + b) + c.
Under which of the following conditions is f(x) affine but not linear?

A. Ab = 0; c ̸= 0

B. Ab ̸= 0; c = 0

C. Ab+ c = 0

D. Ab+ c ̸= 0

E. None of the above

1.4. (1 point) Short answer: Consider the following convex optimization problem for x ∈ R.

min
x

x2 + 3x+ 2

subject to − log(x) ≤ 1

What are the implicit constraints for this problem?
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2 Convex Sets (26 points)
2.1. (a) (3 points) Show that a polyhedron {x ∈ Rn : Ax ≤ b}, for some A ∈ Rm×n, b ∈ Rm is

convex.

(b) (3 points) Show that the polyhedron is closed.

2.2. (4 points) Let A ∈ Rm×n. Show that if S ⊆ Rm is convex then so is A−1(S) = {x ∈ Rn : Ax ∈
S}, which is called the preimage of S under the map A : Rn → Rm.

2.3. (a) (3 points) Show that if Si ⊆ Rn, i ∈ I is a collection of convex sets, then their intersection
∩i∈ISi is also convex.

(b) (3 points) Show that the same statement holds if we replace “convex” with “closed”.

2.4. (a) (4 points) Show that the unit ball B := {x : ∥x∥2 ≤ 1} is convex

(b) (3 points) Show that If D is a convex set in Rd and A ∈ Rd×d is a matrix and b ∈ Rd is a
vector then

{x ∈ Rd | Ax+ b ∈ D}

is also convex.

(c) (3 points) Show that an Ellipsoid is convex: An Ellipsoid E in Rd is a set defined as: for some
matrix A in Rd×d and vector b ∈ Rd:

E = {x ∈ Rd | (x− b)⊤A⊤A(x− b) ≤ 1}.
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3 Convex Functions (27 points)
3.1. (3 points) Prove that f(x) = ex is convex using the zero’th-order, first-order, or second-order

criterion of a convex function

3.2. (4 points) Prove that f(x) = log(1 + ex) is convex using the zero’th-order, first-order, or second-
order criterion of a convex function

3.3. (5 points) Prove that f(x) = ReLU(x) is convex using the zero’th-order, first-order, or second-
order criterion of a convex function

3.4. (5 points) Suppose f is a convex function over Rd, prove that for any positive integer d′, any
matrix A ∈ Rd×d′ and any vector b ∈ Rd, g(x) := f(Ax + b) is a convex function over Rd′ as
well.

3.5. (5 points) Suppose f1, · · · , fm are convex functions over Rd, show that for any λ1, · · · , λm ≥ 0,

f(x) :=
∑
i∈[m]

λifi(x)

is a convex function over Rd.

3.6. (5 points) The objective function in the logistic regression problem is of the form

f(x) =
∑
i∈[m]

− log

(
1

1 + exp{−yi⟨ai, x⟩}

)
,

where x, a1, . . . , am ∈ Rd. Prove that f(x) is convex.
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4 Characterizations of Convexity (10 points)
4.1. (10 points) Show that if f : R → R is convex then the fact that f ′′(x) ≥ 0 for every x, implies

that for any x, y,

f(y) ≥ f(x) + f ′(x)(y − x).

Throughout this question assume that the function f is twice differentiable on R.

Hint: One possible route to show this is to first show that (a) a function which is monotone satisfies
the above inequality (i.e. is convex by the first-order characterization), and then to (b) show that a
function whose second derivative is ≥ 0 is monotone.

The fundamental theorem of calculus is useful to recall: for any nice (continuously differentiable
on [0, 1]) function,

∫ 1
0 f ′(t)dt = f(1)− f(0).

Particularly, two expressions you might find useful to play with (try to bound them or re-express
them using the fundamental theorem etc.) are:

I1 :=

∫ 1

0

d

dt
f((1− t)x+ ty)dt,

I2 :=

∫ 1

0

d

dt

(
f ′((1− t)x+ ty)

)
dt ∈ R.
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5 Optimization with CVX (27 points)

CVX is a framework for disciplined convex programming: it’s rarely the fastest tool for the job, but it’s
widely applicable, and so it’s a great tool to be comfortable with. In this exercise we will set up the
CVX environment and solve a convex optimization problem.

Generally speaking, for homeworks in this class, your solution to programming-based problems should
include plots and whatever explanation necessary to answer the questions asked. In addition, your full
code should be submitted to the corresponding programming slot on Gradescope—there is no auto-
grader.

CVX variants are available for each of the major numerical programming languages. There are some
minor syntactic and functional differences between the variants but all provide essentially the same
functionality. Download the python CVX variant:

• Python: http://www.cvxpy.org/

Consult the documentation to understand the basic functionality. Make sure that you can solve the least
squares problem minβ ∥y − Xβ∥22 for an arbitrary vector y and matrix X . Check your answer by
comparing with the closed-form solution (XTX)−1XT y.

Given labels y ∈ {−1, 1}n, and a feature matrix X ∈ Rn×p with rows x1, . . . xn ∈ Rp, recall the
hard-margin support vector machine (SVM) problem over parameters β ∈ Rp and β0 ∈ R:

min
β,β0

1

2
βTβ

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . n.

5.1. (5 points) Numerical answer: Load the training data in TrainLinSep.csv and TrainNoSep.csv.
Both of these datasets are matrices of n = 200 rows and 3 columns. The first two columns give
the first p = 2 features, and the third column gives the labels. Using CVX, solve the hard-margin
SVM problem on both datasets. Report the optimal coefficients β ∈ R2 and intercept β0 ∈ R
(round your answers to four digits after the decimal point). If the problem has no solution, answer
”infeasible”.

5.2. (4 points) Plot: Recall that the SVM solution defines a hyperplane

β0 + βTx = 0,

which serves as the decision boundary for the SVM classifier. For each of the two datasets, plot
the training data and color the points from the two classes differently. Draw the decision boundary
learned by the hard-margin SVM on top. If the optimal β, β0 do not exist, answer ”infeasible”.

Hint: use the plotDecisionBoundary() function provided in order to produced plots.
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Given labels y ∈ {−1, 1}n, and a feature matrix X ∈ Rn×p with rows x1, . . . xn, recall the soft-margin
support vector machine (SVM) problem over parameters β ∈ Rp and β0 ∈ R and slack variables
ξi ∈ R:

min
β,β0,ξ

1

2
βTβ + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n.

5.3. (5 points) Numerical answer: Now use CVX to solve the soft-margin SVM problem on TrainLinSep.csv
and TrainNoSep.csv with C = 0.1. Report the optimal coefficients β ∈ R2 and intercept
β0 ∈ R (round your answers to four digits after the decimal point). If the problem has no solution,
answer ”infeasible”.

5.4. (4 points) Plot: Now use the coefficients from the soft-margin SVM formulation to plot the
learned decision boundary with C = 0.1. For each of the two datasets, plot the training data
and color the points from the two classes differently. Draw the decision boundary on top. If the
optimal β, β0 do not exist, answer ”infeasible”.

Hint: use the plotDecisionBoundary() function provided in order to produced plots.

5.5. (3 points) Short answer: How does the separability of the data affect the SVM solution for the
hard-margin formulation and the soft-margin formulation?

5.6. (6 points) Plot: Investigate many values of the cost parameter C = 2a, as a varies from −5
to 5. For each one, solve the soft-margin SVM problem, form the decision boundary, and cal-
culate the misclassification error on the test data. Make two plots (one for each test dataset:
TestLinSep.csv and TestNoSep.csv) of misclassification error (y axis) versus C (x axis,
which you should plot on log2 scale).

Note: Set solver to ECOS if you’re having issues with the default solver not yielding a solution.

5.7. (0 points) Did you upload your code to the appropriate programming slot on Gradescope?
Hint: The correct answer is ‘yes’.
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6 Collaboration Questions (2 points)
After you have completed all other components of this assignment, report your answers to these ques-
tions regarding the collaboration policy. Details of the policy can be found in the syllabus.

6.1. (1 point) Did you collaborate with anyone on this assignment? If so, list their name or Andrew ID
and which problems you worked together on.

6.2. (1 point) Did you find or come across code that implements any part of this assignment? If so,
include full details.
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