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Instructions
• Collaboration Policy: Please read the collaboration policy in the syllabus.

• Late Submission Policy: See the late submission policy in the syllabus.

• Submitting your work: You will use Gradescope to submit answers to all questions and code.

– Written: You will submit your completed homework as a PDF to Gradescope. For each prob-
lem, please clearly indicate the question number (e.g. 3.2). Submissions can be handwritten,
but must be clearly legible; otherwise, you will not be awarded marks. Alternatively, submis-
sions can be written in LATEX. You may use the LATEX source of this assignment (included in the
handout .zip) as your starting point. For multiple choice / select all questions, simply write the
letter(s) (e.g. A, B, C) corresponding to your chosen answer.

– Programming: You will submit your code for programming questions to Gradescope. There is
no autograder. We will examine your code by hand and may award marks for its submission.

• Materials: The data and reference output that you will need in order to complete this assignment is
posted along with the writeup and template on the course website.

Question Points

Implications of Smoothness 14

Strict and Strong Convexity 11

Gradient descent convergence analysis 15

Subgradient method for LASSO regression 22

Collaboration Questions 2

Total: 64

*Compiled on Friday 22nd September, 2023 at 16:24
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Homework 2: Smoothness, Convexity, & Gradient Descent 10-425/10-625

1 Implications of Smoothness (14 points)
Let f be convex and twice continuously differentiable.

1. ∇f is Lipschitz with constant L;

2. (∇f(x)−∇f(y))T (x− y) ≤ L∥x− y∥22 for all x, y;

3. ∇2f(x) ⪯ LI for all x;

4. f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ∥y − x∥22 for all x, y.

Prove the following statements:1

1.1. (3 points) 1 ⇒ 2

(Hint: use the Cauchy-Schwartz inequality.)

1.2. (4 points) 3 ⇒ 4

(Hint: Use the Taylor expansion with Lagrange form of the remainder, f(y) = f(x)+∇f(x)T (y−
x) + 1

2(y − x)T∇2f(λx+ (1− λ)y)(y − x) which holds for any twice differentiable function f .)

1.3. (3 points) 4 ⇒ 2

(Hint: Was that f(y) ≤ . . . or f(x) ≤ . . . or is it both?)

1.4. (4 points) 3 ⇒ 1

(Hint: Start by applying the integral form of the mean-value theorem, so we have for all x, y:
∇f(y)−∇f(x) =

∫ 1
0 ∇2f(x+ t(y − x))(y − x) dt.)

1There’s a lovely proof of 2 ⇒ 3, but it seemed best to leave that one as an optional exercise.
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2 Strict and Strong Convexity (11 points)
2.1. (3 points) Proof: Let f be convex and twice continuously differentiable with convex domain

dom(f).

1. g(x) = f(x)− α
2 ∥x∥

2 is convex.

2. for all x, y ∈ dom(f) and λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− α

2
λ(1− λ)∥x− y∥2

Show that 1 ⇒ 2.

2.2. (3 points) Proof: Show that strong convexity implies strict convexity.

2.3. (1 point) True or False: If f is a strictly convex function, then its minimizer must be unique.

A. True

B. False

2.4. (1 point) True or False: For a twice differentiable function f , the function f is strictly convex if
and only if ∇2f(x) ≻ 0 for all x.

A. True

B. False

2.5. (3 points) Proof: Show that strong convexity does not imply differentiability. (Hint: Consider the
function f(x) = x2 + |x|. Is it strongly convex? Is it differentiable?).
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3 Gradient descent convergence analysis (15 points)
Here we will assume nothing about convexity of f . We will show that gradient descent reaches an ϵ-
substationary point x, such that ∥∇f(x)∥2 ≤ ϵ, in O(1/ϵ2) iterations. Important note: you may assume
that f is β-smooth and satisfies the following inequality

f(y) ≤ f(x) +∇f(x)T (y − x) +
β

2
∥y − x∥22, for all x, y. (1)

3.1. (3 points) Plug in y = x+ = x− η∇f(x) to (1) to show that

f(x+) ≤ f(x)−
(
1− βη

2

)
η∥∇f(x)∥22.

3.2. (3 points) Use η ≤ 1/β, and rearrange the previous result, to get

∥∇f(x)∥22 ≤
2

η
(f(x)− f(x+)).

3.3. (3 points) Sum the previous result over all iterations from 1, . . . , k + 1 to establish

k∑
i=0

∥∇f(x(i))∥22 ≤
2

η
(f(x(0))− f⋆).

3.4. (3 points) Lower bound the sum in the previous result to get

min
i=0,...,k

∥∇f(x(i))∥2 ≤

√
2

η(k + 1)
(f(x(0))− f⋆),

3.5. (3 points) Show that the bound above implies that gradient descent can find an ϵ-substationary
point in O(1/ϵ2) iterations.
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4 Subgradient method for LASSO regression (22 points)
Given labels Y ∈ Rn, and a feature matrix X ∈ Rn×p with rows x1, . . . xn ∈ Rp, LASSO is linear
regression with ℓ1 regularization. The optimization problem is:

min
β

1

n
∥Xβ − Y ∥22 + λ∥β∥1

where λ ∈ R is the weight of the regularizer and β ∈ Rp are the model parameters we wish to learn.
Below we use f(β;X,Y ) = 1

n∥Xβ−Y ∥22+λ∥β∥1 to denote this objective function and h(β;X,Y ) =
1
n∥Xβ − Y ∥22 to denote the unregularized objective.

There are many methods for solving the LASSO problem. In this section, you will implement two such
algorithms and compare their behavior. Both algorithms follow the same high-level structure:

Algorithm 1 Training Algorithm

1: Initialize β(0) to the 0 vector
2: for t = 1, 2, . . . , T do
3: Update the parameters β(t) = . . .

4: Compute train loss e(t)train = f(β;Xtrain, Ytrain)

5: Compute test loss e(t)test = f(β;Xtrain, Ytrain)

6: return β

The difference between the algorithms is in how they update the parameters in line 3:

• Algorithm 1A: The Subgradient Method Update the parameters as in gradient descent, except
that we select a vector g(t) from the subgradient ∂f .

g(t) ∈ ∂f(β(t−1);Xtrain, Ytrain)

β(t) = β(t−1) − ηg(t)

• Algorithm 1B: Truncated Gradient Compute an intermediate vector of parameters β(t− 1
2
) with-

out the ℓ1 penalty. And whenever an entry of the vector β(t− 1
2
) has absolute value less than ηλ,

set it to zero. The full update rule is:

g(t) = ∇h(β(t−1);Xtrain, Ytrain)

β(t− 1
2
) = β(t−1) − ηg(t)

β
(t)
j = sign(β(t)

j )max(0, |β(t− 1
2
)| − ηλ), ∀j

The data is provided as numpy arrays saved to two files: train.npy for training and test.npy
for testing. The last column contains the labels Y and the other columns contain the features X . You
should use the np.load() function to read each .npy file. The first column of the features is a vector
of all ones; this ensures that we don’t need an explicit intercept parameter since β1 is doing that job.

Initialize β to be 0, use λ = 0.1, and learning rate η = 0.01 to run the optimization for T = 200
iterations.

Remember to submit your full code to the corresponding programming slot on Gradescope; here is no
autograder.
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4.1. (5 points) Plot: Create a plot for the loss on training data and the loss on test data throughout the
training process. Here the loss is the objective function with either X = Xtrain or X = Xtest. The
x-axis should show the iteration and the y-axis the loss. Provide two plots: one for The Subgradient
Method and one for Truncated Gradient.

(Hint: Use the provided function plot_loss_curve() to plot the train/test losses.)

4.2. (5 points) Plot: Create a histogram of the learned weights β. Provide two plots: one for The
Subgradient Method and one for Truncated Gradient.

(Hint: Use the provided function plot_weight_histogram() to plot each histogram.)

4.3. (3 points) Table of numerical values: Report the number of parameters (i.e. entries βj ∈ R in
the vector β) that are exactly zero (βj = 0) and that are non-zero (βj ̸= 0) for the two algorithms
(The Subgradient Method vs. Truncated Gradient).

(Hint: You can use the function np.count_nonzero().)

# of Exact Zeros # of Non-Zeros
Subgradient Method
Truncated Gradient

4.4. (3 points) Short answer: How does the the choice of algorithm (The Subgradient Method vs.
Truncated Gradient) affect the sparsity2 of the learned weights β?

4.5. (4 points) Table of numerical values: Report the final train loss and final test loss for the two
algorithms (The Subgradient Method vs. Truncated Gradient).

Subgradient Method Truncated Gradient
Final train loss
Final test loss

4.6. (2 points) Short answer: What is the empirical tradeoff between sparsity and training loss? And
between sparsity and test loss?

2Sparsity refers to the number of zeros present in the parameter vector.
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5 Collaboration Questions (2 points)
After you have completed all other components of this assignment, report your answers to these ques-
tions regarding the collaboration policy. Details of the policy can be found in the syllabus.

5.1. (1 point) Did you collaborate with anyone on this assignment? If so, list their name or Andrew ID
and which problems you worked together on.

5.2. (1 point) Did you find or come across code that implements any part of this assignment? If so,
include full details.
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