
HOMEWORK 4
DUALITY & SECOND-ORDER METHODS *

10-425/10-625 INTRODUCTION TO CONVEX OPTIMIZATION
http://425.mlcourse.org

OUT: 10/23/23
DUE: 11/02/23

TAs: Asad & Tiancheng

Instructions
• Collaboration Policy: Please read the collaboration policy in the syllabus.

• Late Submission Policy: See the late submission policy in the syllabus.

• Submitting your work: You will use Gradescope to submit answers to all questions and code.

– Written: You will submit your completed homework as a PDF to Gradescope. For each prob-
lem, please clearly indicate the question number (e.g. 3.2). Submissions can be handwritten,
but must be clearly legible; otherwise, you will not be awarded marks. Alternatively, submis-
sions can be written in LATEX. You may use the LATEX source of this assignment (included in the
handout .zip) as your starting point. For multiple choice / select all questions, simply write the
letter(s) (e.g. A, B, C) corresponding to your chosen answer.

– Programming: You will submit your code for programming questions to Gradescope. There is
no autograder. We will examine your code by hand and may award marks for its submission.

• Materials: The data and reference output that you will need in order to complete this assignment is
posted along with the writeup and template on the course website.

Question Points

Randomized Kaczmarz 15

Duality in Linear Programs 19

Lagrangian Duality 5

Programming 33

Collaboration Questions 2

Total: 74

*Compiled on Monday 23rd October, 2023 at 17:52

1

http://425.mlcourse.org


Homework 4: Duality & Second-order Methods 10-425/10-625

1 Randomized Kaczmarz (15 points)
In this question we’ll explore an example of a stochastic gradient descent algorithm which exhibits a
very fast (linear) rate of convergence. As we discussed in lecture this is often not the case (and the
example is very special).

Here is the setting we’ll work in. We’re interested in solving a very large linear system: Ax = b
where A ∈ Rn×d. We’re given {(a1, b1), . . . , (an, bn)} and would like to find a solution x∗ such that,
aTi x

∗ = bi, for i ∈ {1, . . . , n}.

1. We’ll suppose that A is a full-rank matrix, and that n ≫ d, and that the system of equations is
consistent i.e. there is some x∗ that satisfies all the equations.

2. We’ll also suppose that each of the ai have unit norm, i.e. ∥ai∥2 = 1 (you can always rescale to
ensure this).

To solve this system we just use SGD on the least squares objective, i.e. we’ll try to minimize:

f(x) =
1

2n

n∑
i=1

(aTi x− bi)
2.

1.1. (3 points) It will turn out that SGD (where we sample an equation uniformly at random) on the
above objective with a step-size of 1 will work (i.e. we don’t need to tune it) – and this algorithm is
known as the Randomized Kaczmarz algorithm. Write out the iterates of the algorithm, i.e. express
xt+1 as a function of xt.

1.2. (3 points) Show that if at time-step t we select the it-th equation, then

∥xt+1 − x∗∥22 = ∥xt − x∗∥22 − (aTitx
t − bit)

2.

1.3. (4 points) Take appropriate expectations to argue that,

E[∥xt+1 − x∗∥22|xt] = ∥xt − x∗∥22 −
1

n
∥Axt − b∥22.

1.4. (5 points) Let λmin denote the smallest eigenvalue of (ATA)/n. Then argue that after k-iterations,

E∥xk − x∗∥22 ≤ (1− λmin)
k∥x0 − x∗∥22.

In nice cases, when the rows of A are well-spread out – the minimum eigenvalue will be some small
constant – and in such cases the randomized Kaczmarz algorithm has very rapid linear convergence.
In these cases, the number of iterations you will need to get to ϵ-error will not even depend on the
number of equations you have. This is a nice/surprising property to have, and should be contrasted with
properties that a standard (Gaussian elimination type) method would have.

It’s also worth reflecting on why SGD had linear convergence here (and doesn’t usually) – notice that
the noise in the stochastic gradients gets very small as xk gets close to x∗.

2 of 10



Homework 4: Duality & Second-order Methods 10-425/10-625

2 Duality in Linear Programs (19 points)
In this question, you’ll derive the famous duality between the max flow and min cut LPs. (You can find
this example worked out in almost any book/resource on LP, but you should try to solve the problem
first before looking at any resources.)

Suppose we have a graph G = (V,E) (i.e. with some set of vertices V and edges in E). We label one
of the nodes the source node s, and one of them the sink/target node t. We are additionally given some
capacity constraints, i.e. each edge (i, j) can support no more than cij amount of flow. The capacities
are all positive, cij > 0.

Now, a flow is simply a vector f , with one entry fij per edge in the graph, that satisfies these constraints:

1. Non-negative and capacity bounded: i.e. cij ≥ fij ≥ 0

2. Conservation of flow except at the source and sink nodes, i.e. for any k ∈ V {s, t} we have that,∑
(i,k)∈E

fik =
∑

(k,j)∈E

fkj .

2.1. (4 points) Write out the maximum flow LP, i.e. write out a linear program to determine the flow
which maximizes the total flow emanating from the source node s.

A different problem on graphs is to partition the graph (into two pieces). We’ll focus on what are called
s− t cuts, i.e. partitions of the vertices where the source node s is one partition and the target node t is
in the other partition. An s− t cut is simply a vector x ∈ {0, 1}n where n denotes the number of nodes
in the graph, where we require xs = 1, xt = 0.

For every edge we’ll associate a variable bij such that bij ≥ (xi−xj) and bij ≥ 0 (and eventually we’ll
try to make the bij small). This will have the effect that if i is in the same partition as s, and j is in the
same partition as t, then bij will be 1 (and 0 otherwise). This means that bij will be one if our partition
cuts the edge between i and j. The cost to cut the edge (i, j) is given to you (we are given some positive
costs cij for each edge (i, j)).

2.2. (5 points) Write out an optimization problem to find the s-t cut with minimal cost (use the variables
b, x and the given costs cij). This is not an LP because we have some additional integer constraints
that require xi ∈ {0, 1}. Just drop these integer constraints to form an LP relaxation to the min cut
problem (i.e. an LP with lower objective value than the original problem we wanted to solve.)

2.3. (5 points) Derive the dual of the max flow LP.

2.4. (5 points) Now argue that (after some basic algebraic manipulations/observations similar to ones
we did in lecture for the optimal transport LP) the dual of the max flow LP is identical to the min
cut LP.

3 of 10



Homework 4: Duality & Second-order Methods 10-425/10-625

3 Lagrangian Duality (5 points)
Consider the following optimization problem, herein called the log barrier problem:

minx cTx− τ
∑
i

log(xi) such that Ax = b (1)

The second term in the objective is sometimes called the log barrier function, and acts as a ‘soft’
inequality constraint, because it will tend to positive infinity as any of the xi tend to zero from the right.

Throughout, assume that A, b, and c have been chosen such that {x : x > 0, Ax = b} and {y :
AT y > −c} are non-empty, i.e. the primal LP and its dual are both strictly feasible for both the original
LP and the second problem.

3.1. (5 points) Derive the dual of the log barrier problem in (1).

4 of 10



Homework 4: Duality & Second-order Methods 10-425/10-625

4 Programming (33 points)
In this section, you will implement two algorithms: (damped) Newton’s method1 for unconstrained
optimization and the Log-Barrier Method for inequality constrained optimization.

You should start by implementing Newton’s method, since it will be called as a subroutine in your
Log-Barrier Method implementation—exactly how you do this is up to you, the APIs are designed so
that you might be able to reuse your Newton’s Method implementation directly within your Log-Barrier
method implementation; but because of the various quantities we wish you to print out, it may be easier
to keep them separate and duplicate some code.

The starter code for this section contains four files: models.py, optimizer.py, plot.py, run.py.

models.py: Use this file for your implementation of the mathematical program for the Log-
Barrier Method implementation. This file contains two classes corresponding to a logistic re-
gression model (i.e. an UnconstrainedProgram) and a simple 2D constrained mathematical
program (i.e. a ConstrainedProgram). These classes should be considered as containing the
full definition of the mathematical program, but should not store state about the current parame-
ters over which we are optimizing. Any necessary information from these models can be called
directly in your optimizer implementations.

optimizer.py: Use this file for your optimizer implementations. Implement your optimizers in
the optimize method of the classes NewtonsMethod and LogBarrierMethod. Please
include your implementation where the code is marked with #TODO. It may be helpful to define
helper functions.

run.py: This supplementary file is provided for your convenience for training/testing your various
optimizer implementations. You will need to right your own code to properly run the experiments
described below.

plot.py: This supplementary file is provided to help with generating plots for the tasks that require
them.

1Throughout this writeup, we will may refer to “Newton’s Method”, but by that we mean damped Newton’s method.

5 of 10



Homework 4: Duality & Second-order Methods 10-425/10-625

Newton’s Method
To start, you will implement Newton’s method for an unconstrained optimization problem. The New-
ton’s method algorithm is shown below.

Algorithm 1 Newton’s Method
1: Given a stopping threshold ϵ, maximum number of iterations T , and unconstrained optimiza-

tion problem minx f(x).
2: Initialize θ(0)

3: for t = 0, 1, 2, . . . , T do
4: Compute gradient g = ∇f(θ(t))
5: Compute the Hessian H = ∇2f(θ(t))
6: Compute Newton’s step v = −H−1g = −(∇2f(θ(t)))−1∇f(θ(t))
7: Compute Newton’s decrement λ2 = gTH−1g = ∇f(θ(t))T (∇2f(θ(t)))−1∇f(θ(t))
8: Select a step size η using backtracking line search in the direction v
9: Update parameters θ(t+1) = θ(t) + ηv

10: Stop early if λ2/2 ≤ ϵ

11: return θ(t)

You will implement Newton’s method with backtracking line search. Below is the backtracking line
search algorithm where we assume that v is the line search direction, which may naturally differ from
the negative gradient direction.

Algorithm 2 Backtracking line search

1: Let v be the line search direction, θ be the current parameter value, ∇f(θ) the gradient at θ,
τ0 the initial step size, and α, β the hyperparameters for the line search.

2: η = τ0
3: while f(θ − ηv) ≥ f(θ)− ηα∇f(θ)T v do
4: η ← η ∗ β
5: return η

Other important details:

• To invert the Hessian, you can use np.linalg.inv.

• Before inverting, you should add a scaled identity matrix to the Hessian for stability, i.e. you
should add ξI where ξ = 0.001. See np.eye.

• For all questions below, use the line search hyperparameters τ0 = 1.0, α = 0.7, and β = 0.9.

4.1. (5 points) Run Newton’s method on the logistic regression model (see the class LogisticRegression)
with ϵ = 0.0001 and T = 100 and θ(0) = 0. Plot the training loss f(θ) and testing accuracy
for each epoch—these should be two separate plots. Both axes must be log-scale. (Hint: See
plot_log_log_convergence().)

4.2. (5 points) Fill in the table below by running Newton’s method on the logistic regression model for
T = 100 and θ(0) = 0 and the given values of ϵ. For each ϵ, report the accuracy on test dataset and
the number of epochs that completed before the early stopping condition was reached.

6 of 10



Homework 4: Duality & Second-order Methods 10-425/10-625

ϵ Number of Epochs Test Accuracy

0.1
0.01
0.001
0.0001

4.3. (3 points) Which choice of ϵ gives the best training loss? Which choice of ϵ gives the best test
accuracy? If these are the same, why are they the same; if they are different, why might they
differ?

7 of 10



Homework 4: Duality & Second-order Methods 10-425/10-625

Log-Barrier Method
Now you will implement the Log-Barrier Method for an inequality constrained optimization problem
of the form:

min
x

f(x)

subject to hi(x) ≤ 0, ∀i = 1, . . . ,m

The Log-Barrier Method algorithm is given below. The idea is to repeatedly solve a sequence of opti-
mization problems of the form below for increasing values of ρ > 0:

min
x

ρf(x) + ϕ(x)

where ϕ(x) = −
m∑
i=1

log(−hi(x))

We will use Newton’s method to solve each succcessive problem.

Algorithm 3 Log-Barrier Method

1: Let ρ(1) be the initial temperature, µ > 1 the rate at which we adjust the temperature, and δ
our stopping threshold.

2: Initialize x(0)

3: for t = 1, 2, . . . , T do
4: Let gt(x) = ρ(t)f(x) + ϕ(x)
5: Obtain x(t) = minx gt(x) using Newton’s method initialized to x(t−1)

6: Stop if m/ρ(t) ≤ δ
7: Update ρ(t+1) = µρ(t)

8: return θ(t)

The stopping condition comes from our bound on the duality gap f(x(t))− f(x∗) ≤ m/ρ.

You will apply the Log-Barrier Method to the following 2D inequality constrained optimization prob-
lem, so that you can visualize the progress of the algorithm as it runs.

min
x1,x2

(10x21 + (x2 + 30)2)/2 + 5 log(1 + exp(−x1 − (x2 + 15)))

subject to x2 ≤ 0.5x1 + 15 [top left of pentagon]

x2 ≤ −x1 + 15 [top right of pentagon]

x2 ≥ −3x1 − 30 [bottom left of pentagon]

x2 ≥ 2x1 − 30 [bottom right of pentagon]

x2 ≥ 0.4x1 − 10 [bottom of pentagon]

Other important details:

• You should implement the constrained optimization problem in Simple2DProgram.

• Before writing any code, you should call plot_objective_constraints_iterates()
to see a visualization of the 2D optimization problem.

• For all questions below, use the Newton’s method hyperparameters ϵ = 0.1 and T = 100; use the
line search hyperparameters τ0 = 1, α = 0.7, and β = 0.9.8 of 10



Homework 4: Duality & Second-order Methods 10-425/10-625

4.4. (5 points) Run the Log-Barrier Method on the 2D problem above for each of the following starting
points: (x1, x2) ∈ [(13, 0), (−10, 7)]. Let µ = 2, t(0) = 1, δ = 0.1. Plot the learning curve, i.e. the
value of the objective function f(x) for each Newton’s Method step. (Important Note: the x-axis
should not be t from the Log-Barrier Method algorithm above, it should be the t from the Newton’s
Method algorithm, which is ever increasing on every call to Newton’s Method for the purposes of
plotting). Put the learning curves for each starting point all on the same plot. Both axes must be
log-scale. (Hint: See plot_log_log_convergence().)

4.5. (5 points) Using the same hyperparameter settings and starting points as in the previous ques-
tion: Plot the iterates x(1), x(2), . . . , x(T ) of the algorithm over time, i.e. one iterate per New-
ton’s step. Your plot should also include a contour plot of the function f and the inequality con-
straints h. Put the sequence of iterates for each starting point all on the same plot. (Hint: See
plot_objective_constraints_iterates().)

4.6. (5 points) Run the Log-Barrier Method on the 2D problem above for the starting point (x1, x2) =
(−10, 7), µ = 2, δ = 0.1, for differing values of t(0) ∈ [0.1, 1, 10]. Plot the learning curve,
i.e. the value of the objective function f(x) for each Newton’s Method step. Put the learn-
ing curves for each t(0) all on the same plot. Both axes should be in log-scale. (Hint: See
plot_log_log_convergence().)

4.7. (5 points) Run the Log-Barrier Method on the 2D problem using the same hyperparameters as in
the previous question. But now plot the upper bound on the duality gap m/ρ(t) for each Newton’s
method step. Only the vertical axis should be in log-scale.

9 of 10



Homework 4: Duality & Second-order Methods 10-425/10-625

5 Collaboration Questions (2 points)
After you have completed all other components of this assignment, report your answers to these ques-
tions regarding the collaboration policy. Details of the policy can be found in the syllabus.

5.1. (1 point) Did you collaborate with anyone on this assignment? If so, list their name or Andrew ID
and which problems you worked together on.

5.2. (1 point) Did you find or come across code that implements any part of this assignment? If so,
include full details.

10 of 10


	Randomized Kaczmarz
	Duality in Linear Programs
	Lagrangian Duality
	Programming
	Collaboration Questions

