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• Clearly mark your answers in the allocated space on the front of each page. If
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Instructions for Specific Problem Types

For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

 Matt Gormley

# Marie Curie

# Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in
the new answer:

Select One: Who taught this course?

 Matt Gormley

# Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are scientists?

� Stephen Hawking

� Albert Einstein

� Isaac Newton

� I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and
bubble in the new answer(s):

Select all that apply: Which are scientists?

� Stephen Hawking

� Albert Einstein

� Isaac Newton

��@@� I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully
included in the given space. You may cross out answers or parts of answers, but the final
answer must still be within the given space.

Fill in the blank: What is the course number?

10-601 10-��SS7601
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1 Logistic Regression

1. [2 pts] If today I want to predict the probability that a student sleep more than 8 hours
on average (SA) given the Course loading (C), I will choose to use linear regression over
logistic regression.

Circle one: True False

2. Answer the following questions with brief explanations where necessary.

a) [2 pts] A generalization of logistic regression to a multiclass settings involves ex-

pressing the per-class probabilities P (y = c|x) as the softmax function exp(wT
c x)∑

d∈C exp(wT
d x)

,

where c is some class from the set of all classes C.

Consider a 2-class problem (labels 0 or 1). Rewrite the above expression for this
situation, to end up with expressions for P (Y = 1|x) and P (Y = 0|x) that we have
already come across in class for binary logistic regression.

b) [3 pts] Given 3 data points (1, 1), (1, 0), (0, 0) with labels 0, 1, 0 respectively. Con-
sider 2 models, Model 1: σ(w1x1 + w2x2), Model 2: σ(w0 + w1x1 + w2x2) (σ(z) is
the sigmoid function 1

1+e−z ) that compute p(y = 1|x). Using the given data, we can
learn parameters ŵ by maximizing the conditional log-likelihood.

Suppose we switched (0, 0) to label 1 instead.

Do the parameters learnt for Model 1 change?

Circle one: True False
One-line explanation:

What about Model 2?

Circle one: True False
One-line explanation:

c) [2 pts] For logistic regression, we need to resort to iterative methods such as
gradient descent to compute the ŵ that maximizes the conditional log likelihood.
Why?

d) [3 pts] Considering a Gaussian prior, write out the MAP objective function J(w)MAP

in terms of the MLE objective J(w)MLE. Name the variant of logistic regression
this results in.

3. Given a training set {(xi, yi), i = 1, . . . , n} where xi ∈ Rd is a feature vector and yi ∈
{0, 1} is a binary label, we want to find the parameters ŵ that maximize the likelihood
for the training set, assuming a parametric model of the form

p(y = 1|x;w) =
1

1 + exp(−wTx)
.
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The conditional log likelihood of the training set is

`(w) =
n∑
i=1

yi log p(yi, |xi;w) + (1− yi) log(1− p(yi, |xi;w)),

and the gradient is

∇`(w) =
n∑
i=1

(yi − p(yi|xi;w))xi.

a) [5 pts.] Is it possible to get a closed form for the parameters ŵ that maximize the
conditional log likelihood? How would you compute ŵ in practice?

b) [5 pts.] For a binary logistic regression model, we predict y = 1, when p(y = 1|x) ≥
0.5. Show that this is a linear classifier.

c) Consider the case with binary features, i.e, x ∈ {0, 1}d ⊂ Rd, where feature x1 is
rare and happens to appear in the training set with only label 1. What is ŵ1? Is the
gradient ever zero for any finite w? Why is it important to include a regularization
term to control the norm of ŵ?

4. Given the following dataset, D, and a fixed parameter vector, θ, write an expression for
the binary logistic regression conditional likelihood.

D = {(x(1), y(1) = 0), (x(2), y(2) = 0), (x(3), y(3) = 1), (x(4), y(4) = 1)}

• Write your answer in terms of θ, x(1), x(2), x(3), and x(4).

• Do not include y(1), y(2), y(3), or y(4) in your answer.

• Don’t try to simplify your expression.

Conditional likelihood:

5. Write an expression for the decision boundary of binary logistic regression with a bias
term for two-dimensional input features x1 ∈ R and x2 ∈ R and parameters b (the
intercept parameter), w1, and w2. Assume that the decision boundary occurs when
P (Y = 1 | x, b, w1, w2) = P (Y = 0 | x, b, w1, w2).

(a) Write your answer in terms of x1, x2, b, w1, and w2.

Decision boundary equation:

(b) What is the geometric shape defined by this equation?
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6. We have now feature engineered the two-dimensional input, x1 ∈ R and x2 ∈ R, mapping

it to a new input vector: x =

 1
x1

2

x2
2


(a) Write an expression for the decision boundary of binary logistic regression with this

feature vector x and the corresponding parameter vector θ = [b, w1, w2]
T . Assume

that the decision boundary occurs when P (Y = 1 | x,θ) = P (Y = 0 | x,θ). Write
your answer in terms of x1, x2, b, w1, and w2.

Decision boundary expression:

(b) What is the geometric shape defined by this equation?

(c) If we add an L2 regularization on [w1, w2]
T , what happens to parameters as we

increase the λ that scales this regularization term?

(d) If we add an L2 regularization on [w1, w2]
T , what happens to the decision bound-

ary shape as we increase the λ that scales this regularization term?
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2 Feature Engineering and Regularization

1. Model Complexity: In this question we will consider the effect of increasing the
model complexity, while keeping the size of the training set fixed. To be concrete, con-
sider a classification task on the real line R with distribution D and target function
c∗ : R→ {±1} and suppose we have a random sample S of size n drawn iid from D. For
each degree d, let φd be the feature map given by φd(x) = (1, x, x2, . . . , xd) that maps
points on the real line to (d+ 1)-dimensional space.

Now consider the learning algorithm that first applies the feature map φd to all the
training examples and then runs logistic regression as in the previous question. A new
example is classified by first applying the feature map φd and then using the learned
classifier.

a) [4 pts.] For a given dataset S, is it possible for the training error to increase when
we increase the degree d of the feature map? Please explain your answer in 1
to 2 sentences.

b) [4 pts.] Briefly explain in 1 to 2 sentences why the true error first drops and
then increases as we increase the degree d.
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3 Neural Networks

Figure 1: neural network

1. Consider the neural network architecture shown above for a 2-class (0, 1) classification
problem. The values for weights and biases are shown in the figure. We define:

a1 = w11x1 + b11

a2 = w12x1 + b12

a3 = w21z1 + w22z2 + b21

z1 = relu(a1)

z2 = relu(a2)

z3 = σ(a3), σ(x) = 1
1+e−x

Use this information to answer the questions that follow.

(i) [6 pts] For x1 = 0.3, compute z3, in terms of e. Show all work.
z3 =

(ii) [2 pts] To which class does the network predict the given data point (x1 = 0.3),
i.e., ŷ =? Note that ŷ = 1 if z3 >

1
2
, else ŷ = 0.

Circle one: 0 1

(iii) [6 pts] Perform backpropagation on the bias b21 by deriving the expression for
the gradient of the loss function L(y, z3) with respect to the bias term b21,

∂L
∂b21

, in
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terms of the partial derivatives ∂α
∂β

, where α and β can be any of L, zi, ai, bij, wij, x1
for all valid values of i, j. Your backpropagation algorithm should be as explicit
as possible—that is, make sure each partial derivative ∂α

∂β
cannot be decomposed

further into simpler partial derivatives. Do not evaluate the partial derivatives.

(iv) [6 pts] Perform backpropagation on the bias b12 by deriving the expression for
the gradient of the loss function L(y, z3) with respect to the bias term b12,

∂L
∂b12

, in

terms of the partial derivatives ∂α
∂β

, where α and β can be any of L, zi, ai, bij, wij, x1
for all valid values of i, j. Your backpropagation algorithm should be as explicit
as possible—that is, make sure each partial derivative ∂α

∂β
cannot be decomposed

further into simpler partial derivatives. Do not evaluate the partial derivatives.

2. In this problem we will use a neural network to classify the crosses (×) from the circles (◦)
in the simple dataset shown in Figure 2a. Even though the crosses and circles are not
linearly separable, we can break the examples into three groups, S1, S2, and S3 (shown
in Figure 2a) so that S1 is linearly separable from S2 and S2 is linearly separable from
S3. We will exploit this fact to design weights for the neural network shown in Figure 2b
in order to correctly classify this training set. For all nodes, we will use the threshold
activation function

φ(z) =

{
1 z > 0
0 z ≤ 0.

0 1 2 3 4 50

1

2

3

4

5

x1

x2
S1

S2

S3

(a) The dataset with groups S1, S2, and S3.

y

h1 h2

x1 x2

w11 w21
w12 w22

w31
w32

(b) The neural network architecture

Figure 2
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(b) Set S1 and S2
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(c) Set S1, S2 and S3

Figure 3: NN classification.

(i) First we will set the parameters w11, w12 and b1 of the neuron labeled h1 so that its
output h1(x) = φ(w11x1 +w12x2 + b1) forms a linear separator between the sets S2

and S3.

(a) [1 pt.] On Fig 3a, draw a linear decision boundary that separates S2 and S3.

(b) [1 pt.] Write down the corresponding weights w11, w12, and b1 so that h1(x) = 0
for all points in S3 and h1(x) = 1 for all points in S2. One solution would suffice
and the same applies to (ii) and (iii).

(ii) Next we set the parameters w21, w22 and b2 of the neuron labeled h2 so that its
output h2(x) = φ(w21x1 +w22x2 + b2) forms a linear separator between the sets S1

and S2.

(a) [1 pt.] On Fig 3b, draw a linear decision boundary that separates S1 and S2.

(b) [1 pt.] Write down the corresponding weights w21, w22, and b2 so that h2(x) = 0
for all points in S1 and h2(x) = 1 for all points in S2.

(iii) Now we have two classifiers h1 (to classify S2 from S3) and h2 (to classify S1 from
S2). We will set the weights of the final neuron of the neural network based on
the results from h1 and h2 to classify the crosses from the circles. Let h3(x) =
φ
(
w31h1(x) + w32h2(x) + b3

)
.

(a) [1 pt.] Compute w31, w32, b3 such that h3(x) correctly classifies the entire
dataset.

(b) [1 pt.] Draw your decision boundary in Fig 3c.

(iv) Back propagation
In the above example, we need to learn the weights by according to the data. At
first step, we need to get the gradients of the parameters of neural networks.

Suppose there m data points xi with label yi, where i ∈ [1,m]. xi is a d× 1 vector
and yi ∈ {0, 1}. We use the data to train a neural network with one hidden layer:

h(x) =σ(W1x+ b1)

p(x) =σ(W2h(x) + b2),
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where σ(x) = 1
1+exp(−x) is the sigmoid function, W1 is a n by d matrix and b1 is a n

by 1 vector, W2 is a 1 by n matrix and b1 is a 1 by 1 vector.

We use cross entropy loss function and minimize the negative log likelihood to train
the neural network:

l =
1

m

∑
i

li =
1

m

∑
i

−(yi log pi + (1− yi) log(1− pi)),

where pi = p(xi), hi = h(xi).

(a) Describe how you would drive the gradients w.r.t the parameters W1,W2 and
b1, b2. (No need to write out the detailed mathematical expression.)

(b) When m is large, we typically use a small sample of all the data set to estimate
the gradient, this is call stochastic gradient descent (SGD). Explain why we
use SGD instead of gradient descent.

(c) Work out the following gradient: ∂l
∂pi
, ∂l
∂W2

, ∂l
∂b2
, ∂l
∂hi
, ∂l
∂W1

, ∂l
∂b1

. When deriving the
gradient w.r.t. the parameters in lower layers, you can may assume the gradient
in upper layers are available to you (i.e., you can use them in your equation).
For example, when calculating ∂l

∂W1
, you can assume ∂l

∂pi
, ∂l
∂W2

, ∂l
∂b2
, ∂l
∂hi

are known.

3. Consider the following neural network for a 2-D input, x1 ∈ R and x2 ∈ R where:

Figure 4: Neural Network

• All g functions are the same arbitrary non-linear activation function with no pa-
rameters

• `(y, ŷ) is an arbitrary loss function with no parameters, and:

z1 = wAx1 + wBx2 a1 = g(z1)

z2 = wCa1 a2 = g(z2)

z3 = wDa1 a3 = g(z3)

z4 = wEa2 + wFa3 ŷ = g(z4)

Note: There are no bias terms in this network.

(a) What is the chain of partial derivatives needed to calculate the derivative ∂`
∂wE

?

Your answer should be in the form: ∂`
∂wE

= ∂?
∂?

∂?
∂?
. . . Make sure each partial derivative

∂?
∂?

in your answer cannot be decomposed further into simpler partial derivatives.
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Do not evaluate the derivatives. Be sure to specify the correct subscripts in
your answer.

∂`
∂wE

=

(b) The network diagram from above is repeated here for convenience: What is the

Figure 5: Neural Network

chain of partial deriviatives needed to calculate the derivative ∂`
∂wC

?
Your answer should be in the form:

∂`

∂wC
=
∂?

∂?

∂?

∂?
...

Make sure each partial derivative ∂?
∂?

in your answer cannot be decomposed further
into simpler partial derivatives. Do not evaluate the derivatives. Be sure to
specify the correct superscripts in your answer.

∂`
∂wC

=

(c) The gradient descent update step for weight wc is:

wc ← wc − α
∂Q

∂t
=
∂s

∂t

where α (alpha) is the learning rate (step size).
Now, we want to change our neural network objective function to add an L2 regu-
larization term on the weights. The new objective is:

`(y, ŷ) + λ
1

2
‖w‖22

where λ (lambda) is the regularization hyperparamter and w is all of the weights
in the neural network stacked into a single vector, x = [wA, wB, wC , wD, wE, wF ]T .
Write the right-hand side of the new gradient descent update step for weight wC
given this new objective function. You may use ∂`

∂wC
in your answer.
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Update: wC ← ...
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4 MLE/MAP

1. Please circle True or False for the following questions, providing brief explanations to
support your answer.

(i) [2 pts] Consider the linear regression model y = wTx+ ε. Assuming ε ∼ N (0, σ2)
and maximizing the conditional log-likelihood is equivalent to minimizing the sum
of squared errors ‖y − wTx‖22.

Circle one: True False
One line justification (only if False):

(ii) [4 pts] Consider n data points, each with one feature xi and an output yi. In linear
regression, we assume yi ∼ N (wxi, σ

2) and compute ŵ through MLE.

Suppose yi ∼ N (log(wxi), 1) instead. Then the maximum likelihood estimate ŵ is
the solution to the following equality:

n∑
i=1

xiyi =
n∑
i=1

xi log(wxi)

Circle one: True False
Brief explanation:

2. Select all that apply: Which of the following are correct regarding Gradient Descent
(GD). Assume data log-likelihood is L(θ|X), which is a function of the parameter θ, and
the objective function is negative log-likelihood .

2 GD requires that L(θ|X) is concave with respect to parameter θ in order to
converge

2 GD requires that L(θ|X) is convex with respect to parameter θ in order to
converge

2 GD update rule is θ ← θ − α∇θL(θ|X)

2 Given a fixed small learning rate (say α = 10−10), GD will always reach the
optimum after infinite iterations (assume that the objective function satisfies
the convergence condition).

3. Let X1, X2, ..., XN be i.i.d. data from a uniform distribution over a diamond-shaped
area with edge length

√
2θ in R2, where θ ∈ R+ (see Figure 6). Thus, Xi ∈ R2 and the

distribution is

p(x|θ) =

{
1

2θ2
if ‖x‖ ≤ θ

0 otherwise

where ‖x‖ = |x1|+ |x2| is L1 norm. Please find the maximum likelihood estimator of θ.
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Figure 6: Area of ‖x‖ ≤ θ

4. Short answer: Suppose we want to model a 1-dimensional dataset of N real valued
features

(
x(i)
)

and targets
(
y(i)
)

by:

y(i) ∼ N
(
exp(wx(i)), 1

)
Where w is our unknown (scalar) parameter and N is the normal distribution with
probability density function:

f(a)N (µ,σ2) =
1√

2πσ2
exp

(
−(a− µ)2

2σ2

)
Can the maximum conditional negative log likelihood estimator of w be solved analyti-
cally? If so, find the expression for wMLE. If not, say so and write down the update rule
for w in gradient descent.

5. Assume we have n iid random variables xi, i ∈ [1, n] such that each xi belongs to a
normal distribution with mean µ and variance σ2.

p(x1, x2, ..., xn|µ, σ2) =
n∏
i=1

1√
2πσ

exp
{−(xi − µ)2

2σ2

}
a) Write the log likelihood function l(x1, x2...xn|µ, σ2)

b) Derive an expression for the Maximum Likelihood Estimate for the variance (σ2)

6. Assume we have a random variable that is Bernoulli distributedX1, . . . , Xn ∼ Bernoulli(θ).
We are going to derive its MLE. Recall that in a Bernoulli X = {0, 1} and the pdf of a
Bernoulli is

p(X; θ) = θx(1− θ)1−x

a) Derive the likelihood, L(θ;X1, . . . , Xn)

b) Derive the following formula for the log likelihood

l(θ;X1, . . . , Xn) = (
n∑
i=1

Xi) log(θ) + (n−
n∑
i=1

Xi) log(1− θ)

c) Derive the MLE, θ̂, and show that θ̂ =
1

n
(
∑n

i=1Xi)
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7. Assume we have a random sample that is Bernoulli distributedX1, . . . , Xn ∼ Exponential(θ).
We are going to derive the MLE for θ. Recall that a exponential random variable X has
p.d.f:

P (X; θ) = θ exp(−θX).

a) Derive the likelihood, L(θ;X1, . . . , Xn).

b) Find θ that maximizes L(θ;X1, . . . , Xn).

8. For each question state True or False and give one line justifications.

a) T or F The value of the Maximum Likelihood Estimate (MLE) is equal to the
value of the Maximum A Posteriori (MAP) Estimate with a uniform prior.

b) T or F The bias of the Maximum Likelihood Estimate (MLE) is typically less than
or equal to the bias of the Maximum A Posteriori (MAP) Estimate.

c) T or F The MAP estimate is always better than the MLE.

d) T or F In the limit as n (the number of samples) increases, the MAP and MLE
estimates become the same.

e) T or F Naive Bayes can only be used with MAP estimates, and not MLE estimates.
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5 Probability, Naive Bayes and MLE

5.1 Probability

1. For each question, circle the correct option.

1. Which of the following expressions is equivalent to p(A|B,C,D)?

(a) p(A,B,C,D)
p(C|B,D)p(B|D)p(D)

(b) p(A,B,C,D)
p(B,C)p(D)

(c) p(A,B,C,D)
p(B,C|D)p(B)p(C)

2. Let µ be the mean of some probability distribution. p(µ) is always non-zero.

(a) True

(b) False

2. Assume we have a sample space Ω. Just state T or F, no justification needed.

1. If events A, B, and C are disjoint then they are independent.

2. P (A|B) ∝ P (A)P (B|A)

P (A|B)
.

3. P (A ∪B) ≤ P (A).

4. P (A ∩B) ≥ P (A).

5.2 Naive Bayes

1. Consider the following data. It has 4 features X = (x1, x2, x3, x4) and 3 labels (+1, 0,−1).
Assume that the probabilities p(X|y) and p(y) are both Bernoulli distributions. Answer
the questions that follow under the Naive Bayes assumption.

x1 x2 x3 x4 y
1 1 0 1 +1
0 1 1 0 +1
1 0 1 1 0
0 1 1 1 0
0 1 0 0 -1
1 0 0 1 -1
0 0 1 1 -1

1. Compute the Maximum Likelihood Estimate for p(xi = 1|y),∀i ∈ [1, 4],∀y ∈
{+1, 0,−1}.

2. Compute the Maximum Likelihood Estimate for the prior probabilities p(y =
+1), p(y = 0), p(y = −1)
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3. Use the values computed in the above two parts to classify the data point (x1 =
1, x2 = 1, x3 = 1, x4 = 1) as either belonging to class +1, 0 or −1

2. You are given a data set of 10,000 students with their sex, height, and hair color. You
are trying to build a machine learning classifier to predict the sex of a student, so you
randomly split the data into a training set and a testing set. Here are the specifications
of the data set:

• sex ∈ {male,female}

• height ∈ [0,300] centimeters

• hair ∈ {brown, black, blond, red, green}

• 3240 men in the data set

• 6760 women in the data set

Under the assumptions necessary for Naive Bayes (not the distributional assumptions
you might naturally or intuitively make about the dataset) answer each question with
T or F and a one sentence explanation of your answer:

1. T or F: Height is a continuous valued variable. Therefore Naive Bayes is not
appropriate since it cannot handle continuous valued variables.

2. T or F: Since there is not a similar number of men and women in that dataset
Naive Bayes will have high test error.

3. T or F: p(height|sex, hair) = p(height|sex).

4. T or F: p(height, hair|sex) = p(height|sex) ∗ p(hair|sex).

5.3 Naive Bayes, Logistic Regression

1. Suppose you wish to learn P (Y |X1, X2, X3), where Y,X1, X2 and X3 are all boolean-
valued random variables. You consider both Naive Bayes and Logistic Regression as
possible approaches.

For each of the following, answer True or False, and give a one sentence justification for
your answer.

1. T or F: In this case, a good choice for Naive Bayes would be to implement a
Gaussian Naive Bayes classifier.

2. T or F: To learn P (Y |X1, X2, X3) using Naive Bayes, you must make conditional
independence assumptions, including the assumption that Y is conditionally inde-
pendent of X1 given X2.

3. T or F: Logistic regression is certain to be the better choice in this case.

2. Parameter estimation
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1. How many parameters must be estimated for your Gaussian Naive Bayes classifier,
and what are they (i.e., please list them).

2. How many parameters must be estimated for your Logistic Regression classifier,
and what are they (i.e., please list them).

3. T or F: We can train Naive Bayes using maximum likelihood estimates for each
parameter, but not MAP estimates. Justify your answer in one sentence.

4. T or F: We can train Logistic Regression using maximum likelihood estimates for
each parameter, but not MAP estimates. Justify your answer in one sentence.

3. Mixing discrete and continuous variables. Suppose we add a numeric, real-valued vari-
able X4 to our problem. Note we now have a mix of some discrete-valued Xi and one
continuous Xi.

1. Explain in two sentences why we can no longer use Naive Bayes, or if we can, how
we would modify our first solution.

2. Explain in two sentences why we can no longer use Logistic Regression, or if we
can, how we would modify our first solution.
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6 PAC Learning

1. True and Sample Errors: Consider a classification problem with distribution D and
target function c∗ : Rd 7→ ±1. For any sample S drawn from D, answer whether the
following statements are true or false, along with a brief explanation.

a) [4 pts] For a given hypothesis space H, it is possible to define a sufficient size of
S such that the true error is bounded by the sample error by a margin ε, for all
hypotheses h ∈ H with a given probability.

b) [4 pts] The true error of any hypothesis h is an upper bound on its training error
on the sample S.

2. Let X be the feature space and there is a distribution D over X. We have training
samples

S : (x1, c
? (x1)) , · · · , ((xm, c? (xm))) ,

xi i.i.d from D. We assume labels c? (xi) ∈ {−1, 1}.

Let H be a concept class and let h ∈ H be a concept. In this question we restrict
ourselves to H. We use

errS (h) =
1

m

m∑
i=1

I (h(xi) 6= c? (xi))

to denote the training error and

errD (h) = Prx∼D (h(x) 6= c? (x))

to denote the true error. Recall the theorem from class, if the concept class is finite, in
the realizable case

m ≥ 1

ε

[
ln (|H|) + ln

(
1

δ

)]
labeled examples are sufficient so that with probability at least 1 − δ, all h ∈ H with
errD (h) ≥ ε have errS (h) > 0; in the agnostic case,

m ≥ 1

2ε2

[
ln (|H|) + ln

(
2

δ

)]
labeled examples are sufficient such that with probability at least 1− δ, all h ∈ H have
|errD (h)− errS (h) | < ε.

a) [2 pts] Briefly explain what is realizable case and what is agnostic case.

b) [4 pts] What is the full name of PAC learning? What is the correspondence between
ε, δ and the full name?
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c) [4 pts] (True or False) Consider two concept finite classes H1 and H2 such that
H1 ⊂ H2. Let h1 = arg minh∈H1 errS (h) and h2 = arg minh∈H2 errS (h). Thus
according to the theorem, because |H2| ≥ |H1|, errD (h2) ≥ errD (h1). Briefly
justify your answer.
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