
Recitation 2
Decision Trees

10-301/10-601: Introduction to Machine Learning

09/10/2021

1 Programming: Tree Structures and Algorithms

Topics Covered:

• Depth and height of trees

• Recursive traversal of trees

– Depth First Search

∗ Pre Order Traversal

∗ Inorder Traversal

∗ Post Order Traversal

– Breadth First Search (Self Study)

• Debugging in Python

Questions:

1. Depth and height of a node examples

2. In class coding and explanation of Depth First Traversal in Python.

Pre-order, Inorder and Post-order Tree Traversal

This class represents an individual node

class Node:

def __init__(self,key):

self.left = None

self.right = None

self.val = key

A function to do preorder tree traversal

def printPreorder(root):

if root is not None:

10-301/10-601: Recitation 2 Page 2 of 11 02/12/2021

First print the data of node

print(root.val, "\t",end="")

Then recurse on left child

printPreorder(root.left)

Finally recurse on right child

printPreorder(root.right)

A function to do inorder tree traversal

def printInorder(root):

if root is not None:

First recur on left child

printInorder(root.left)

then print the data of node

print(root.val, "\t",end="")

now recur on right child

printInorder(root.right)

A function to do postorder tree traversal

def printPostorder(root):

if root is not None:

First recurse on left child

printPostorder(root.left)

then recurse on right child

printPostorder(root.right)

now print the data of node

print(root.val, "\t",end="")

Main body of the program

root = Node(1)

root.left = Node(2)

root.right = Node(3)

root.left.left = Node(4)

root.left.right = Node(5)

print("\n")

10-301/10-601: Recitation 2 Page 3 of 11 02/12/2021

input("press any key to display Preorder traversal")

print ("Preorder traversal of binary tree is: ")

printPreorder(root)

print("\n")

input("press any key to display Inorder traversal")

print ("Inorder traversal of binary tree is")

printInorder(root)

print("\n")

input("press any key to display Postorder traversal")

print ("Postorder traversal of binary tree is")

printPostorder(root)

print("\n")

Code Output

Preorder traversal of binary tree is:

Inorder traversal of binary tree is

Postorder traversal of binary tree is

Preorder traversal of binary tree is: 1 2 4 5 3

Inorder traversal of binary tree is 4 2 5 1 3

Postorder traversal of binary tree is 4 5 2 3 1

10-301/10-601: Recitation 2 Page 4 of 11 02/12/2021

2 ML Concepts: Mutual Information

Information Theory Definitions:

• H(Y) = −
∑

y∈values(Y) P (Y = y) log2 P (Y = y)

• H(Y | X = x) = −
∑

y∈values(Y) P (Y = y|X = x) log2 P (Y = y|X = x)

• H(Y | X) =
∑

x∈values(X) P (X = x)H(Y | X = x)

• I(X;Y) = H(Y)−H(Y | X)

Exercises

• Calculate the entropy of tossing a fair coin.
This is the average surprisal from each flip.

H(X) = −p(heads) log2(p(heads))− p(tails) log2(p(tails))
= −1

2
log2(

1
2
)− 1

2
log2(

1
2
) = 1

• Calculate the entropy of tossing a coin that lands only on tails. Note: 0 · log2(0) = 0.
H(X) = −p(heads) log2(p(heads))− p(tails) log2(p(tails))

= −0 ∗ log2(0)− 1 log2(1) = 0
In other words we are never surprised by any flip. It’s always tails.

• Calculate the entropy of a fair dice roll.
H(X) = −

∑6
x=1(

1
6
) log2(

1
6
) = − log2(6)

• When is the mutual information I(X;Y) = 0?
I(X;Y) = H(X)−H(X | Y)
I(X;Y) is 0 if and only if X and Y are independent.
Mathematically, H(Y | X) = H(Y) making I(X;Y) go to 0.
Intuitively, this is because if X and Y are independent, knowing one tells you nothing
about the other and vice versa, so their mutual information is 0.

10-301/10-601: Recitation 2 Page 5 of 11 02/12/2021

Used in Decision Trees:

Outlook (X1) Temperature (X2) Humidity (X3) Play Tennis? (Y)
sunny hot high no

overcast hot high yes
rain mild high yes
rain cool normal yes

sunny mild high no
sunny mild normal yes
rain mild normal yes

overcast hot normal yes

1. Using the dataset above, calculate the mutual information for each feature (X1, X2, X3)
to determine the root node for a Decision Tree trained on the above data.

H(Y) = -6
8
∗ log2(

6
8
)− 2

8
∗ log2(

2
8
) ≈ 0.811

For attribute X1,

• H(Y | X1 = sunny) = −[1
3
∗ log2(

1
3
) + 2

3
∗ log2(

2
3
)] ≈ 0.918

• H(Y | X1 = rain) = 0

• H(Y | X1 = overcast) = 0

=⇒ H(Y | X1) = [3
8
∗ 0.918 + 3

8
∗ 0 + 2

8
∗ 0] ≈ 0.344

=⇒ I(Y ;X1) ≈ 0.811− 0.344 = 0.467

For attribute X2,

• H(Y | X2 = hot) = −[1
3
∗ log2(

1
3
) + 2

3
∗ log2(

2
3
)] ≈ 0.918

• H(Y | X2 = cool) = 0

• H(Y | X2 = mild) = −[3
4
∗ log2(

3
4
) + 1

4
∗ log2(

1
4
)] ≈ 0.811

=⇒ H(Y | X2) = [3
8
∗ 0.918 + 1

8
∗ 0 + 4

8
∗ 0.811] ≈ 0.75

=⇒ I(Y ;X2) ≈ 0.811− 0.75 = 0.061

For attribute X3,

• H(Y | X3 = high) = −[1
2
∗ log2(

1
2
) + 1

2
∗ log2(

1
2
)] = 1

• H(Y | X2 = normal) = 0

=⇒ H(Y | X3) = [4
8
∗ 1.0 + 4

8
∗ 0] = 0.5

=⇒ I(Y ;X3) ≈ 0.811− 0.5 = 0.311

Since splitting on attribute X1 gives the highest mutual information, the root node
is X1.

10-301/10-601: Recitation 2 Page 6 of 11 02/12/2021

2. Calculate what the next split should be.
From the above part, as we can see that the sub-datasets D(X1=rain) and D(X1=overcast)

are pure, there will be no further splitting on those and we will place a leaf node with
label assignment decided by majority vote classifier. So, we need to split only on the
sub-dataset D(X1=sunny). Now, we will use only D(X1=sunny) to estimate the probabilities
for the next split.

H(Y) = −1
3
∗ log2(

1
3
)− 2

3
∗ log2(

2
3
) ≈ 0.918

For attribute X2,

• H(Y | X2 = hot) = 0

• H(Y | X2 = cool) = 0

• H(Y | X2 = mild) = −[1
2
∗ log2(

1
2
) + 1

2
∗ log2(

1
2
)] = 1

=⇒ H(Y | X2) = [2
3
∗ 1.0 + 1

3
∗ 0] ≈ 0.67

=⇒ I(Y ;X2) ≈ 0.918− 0.67 ≈ 0.25

For attribute X3,

• H(Y | X3 = high) = 0

• H(Y | X3 = normal) = 0

=⇒ H(Y | X3) = [2
3
∗ 0 + 1

3
∗ 0] = 0

=⇒ I(Y ;X3) ≈ 0.918

We split using attribute X3 as it gives the highest mutual information.

3. Draw the resulting tree.

X1

X3

no yes

yes yes

su
nn

y

hi
gh

norm
al

rain
overcast

10-301/10-601: Recitation 2 Page 7 of 11 02/12/2021

3 ML Concepts: Construction of Decision Trees

In this section, we will go over how to construct our decision tree learner on a high level.
The following questions will help guide the discussion:

1. What exactly are the tasks we are tackling? What are the inputs and outputs?
The task: Given a set of train data, test data, and max depth of a tree, we want to learn

a decision tree classifier.

2. How should we represent our decision tree? With which data structures?
There are different ways one can represent the decision tree. Arguably the easiest” or

”most intuitive” would be in a tree data structure introduced in section 1.

3. At each node of the tree, what do we need to store?
Some of the most basic things we want to store:

• The attribute to split at the node

• Attributes that have been used

• The input data at that node

• The left and right child nodes

• Node depth

Note that this list (and the list on the next question) is not exhaustive. One might want
to store other items that can aid the implementation.

4. At each node of the tree, what do we need to do?

• Check ”stopping criteria.” One being the node depth reaching the max depth (What
other stopping criteria is there?). What happens when we reach the stopping cri-
teria?

• Calculate entropy and mutual information for the non-used attributes and select
the best attribute to split

• Split the data based on the selected attributes

5. What are some edge cases we need to think about?

• What happens if max depth equals 0?

• What happens if max depth is greater than the number of attribute?

10-301/10-601: Recitation 2 Page 8 of 11 02/12/2021

4 Programming: Debugging w/ Trees

pdb and common commands

• import pdb then pdb.set trace()

• n (next)

• ENTER (repeat previous)

• q (quit)

• p variable (print value)

• c (continue)

• b (breakpoint)

• l (list where you are)

• s (step into subroutine)

• r (continue until the end of the subroutine)

• ! python command

Real Practice

• In this (extremely contrived) example, we will reversing a 2d list in python.

Buggy Code

• add pdb.set trace() before the line that is causing the error

#reverse the rows of a 2D array

def reverse(original):

rows = len(original)

cols = len(original[0])

new = [[0]*cols]*rows

for i in range(rows):

for j in range(cols):

oppositeRow = rows-i

new[oppositeRow][j]=original[i][j]

return new

a = [[1,2],

[3,4],

[5,6]]

print(reverse(a))

10-301/10-601: Recitation 2 Page 9 of 11 02/12/2021

Solution: There are two errors:

1. oppositeRow should be set to rows-i-1 as it will be out of bounds otherwise

2. Creating a 2d list with new = [[0 ∗ cols] ∗ rows will result in aliasing.

#reverse the rows of a 2D array

def reverse(original):

rows = len(original)

cols = len(original[0])

new = [([0] * cols) for row in range(rows)]

for i in range(rows):

for j in range(cols):

oppositeRow = rows-i-1

new[oppositeRow][j]=original[i][j]

return new

a = [[1,2],

[3,4],

[5,6]]

print(reverse(a))

Buggy Code

import numpy as np

Mat = [[1,0,0,0],

[0,1,1,0],

[1,0,0,0],

[0,1,-1,1],

[0,0,1,0]]

#biggestCol takes a binary - 2d array without headers and returns

#the index of the column with the most non-zero values

def biggestCol(Mat):

#get the number of columns and initialize variables

numCol = len(Mat[0])

maxValue = -1

maxIndex = -1

#iterate over the columns of the matrix

for col in range(numCol):

#counts the number of nonzero values

10-301/10-601: Recitation 2 Page 10 of 11 02/12/2021

count = np.count_nonzero(Mat[:,col])

#change max if needed

if count > maxValue:

maxValue = count

maxIndex = col

return maxIndex

#helper

def getCount(Mat,col):

numRow = len(Mat)

count = 0

for row in range(numRow):

count+= Mat[row][col] == 1

return count

#correct answer is column index 2!

print("column index %d has the most non-zero values" % biggestCol(Mat))

Solution: There are two errors:

1. we should be calling getCount instead of np.count nonzero

2. getCount should be checking if the cell is not equal to 0

import numpy as np

Mat = [[1,0,0,0],

[0,1,1,0],

[1,0,0,0],

[0,1,-1,1],

[0,0,1,0]]

#biggestCol takes a binary - 2d array without headers and returns

#the index of the column with the most non-zero values

def biggestCol(Mat):

#get the number of columns and initialize variables

numCol = len(Mat[0])

maxValue = -1

maxIndex = -1

#iterate over the columns of the matrix

for col in range(numCol):

10-301/10-601: Recitation 2 Page 11 of 11 02/12/2021

#counts the number of nonzero values

count = getCount(Mat,col)

#change max if needed

if count > maxValue:

maxValue = count

maxIndex = col

return maxIndex

#helper

def getCount(Mat,col):

numRow = len(Mat)

count = 0

for row in range(numRow):

count+= Mat[row][col] != 0

return count

#correct answer is column index 2!

print("column index %d has the most non-zero values" % biggestCol(Mat))

	Programming: Tree Structures and Algorithms
	ML Concepts: Mutual Information
	ML Concepts: Construction of Decision Trees
	Programming: Debugging w/ Trees

