
Recitation 3
Classification and Regression

10-301/10-601: Introduction to Machine Learning

09/24/2021

1 k-NN

1.1 A Classification Example

Using the figure below, what would you categorize the green circle as with k = 3? k = 5?

Figure 1: From wiki

Example of k-NN classification. The test sample (green circle) should be classified either to
the first class of blue squares or to the second class of red triangles.

If k = 3 (solid line circle) it is assigned to the second class because there are 2 triangles and
only 1 square inside the inner circle.

If k = 5 (dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles inside the
outer circle).

1.2 k-NN for Regression

You want to predict a continuous variable Y with a continuous variable X. Having just
learned k-NN, you are super eager to try it out for regression. Given the data below, draw
the regression lines (what k-NN would predict Y to be for every X value if it was trained for
the given data) for k-NN regression with k = 1, weighted k = 2, and unweighted k = 2. For
weighted k = 2, take the weighted average of the two nearest points. For unweighted k = 2,
take the unweighted average of the two nearest points.

10-301/10-601: Recitation 3 Page 2 of 14

(a) k = 1 (b) weighted k = 2 (c) unweighted k = 2

SOLUTION:

(a) k = 1 (b) weighted k = 2 (c) unweighted k = 2

10-301/10-601: Recitation 3 Page 3 of 14

2 Perceptron

2.1 Perceptron Mistake Bound Guarantee

If a dataset has margin γ and all points inside a ball of radius R, then the perceptron makes
less than or equal to (R/γ)2 mistakes.

Figure 4: Perceptron Mistake Bound Setup

2.2 Definitions

Margin:

• The margin of example x wrt a linear separator w is the (absolute) distance from x to
the plane w · x = 0.

• The margin γw of a set of examples S wrt a linear separator w is the smallest margin
over points x ∈ S.

• The margin γ of a set of examples S is the maximum γw over all linear separators w.

Linear Separability: For a binary classification problem, a set of examples S is linearly
separable if there exists a linear decision boundary that can separate the points.

We say (batch) perceptron algorithm has converged when it stops making mistakes on the
training data.

2.3 Theorem: Block, Novikoff

Given dataset D = (x(i), y(i))
N

i=1. Suppose:

1. Finite size inputs: ||x(i)|| ≤ R

2. Linearly separable data: ∃θ∗ and γ > 0 s.t. ||θ∗|| = 1 and y(i)(θ∗ · x(i)) ≥ γ,∀i

Then, the number of mistakes made by the Perceptron algorithm on this dataset is k ≤ (R/γ)2

10-301/10-601: Recitation 3 Page 4 of 14

Proof: Part 1: For some A, Ak ≤ ||θ∗||

θ(k+1) · θ∗ = (θ(k) + y(i)x(i)) · θ∗, Perceptron algorithm update

= θ(k) · θ∗ + y(i)(θ∗ · x(i)))

≥ θ(k) · θ∗ + γ, by assumption

=⇒ θ(k+1) · θ∗ ≥ kγ, by induction on k since θ(1) = 0

=⇒ ||θ(k+1)|| ≥ kγ, since ||w|| × ||u|| ≥ w · u and ||θ∗|| = 1

Part 2: For some B, ||θ∗|| ≤ B
√
k

||θ(k+1)||2 = ||θ(k) + y(i)x(i)||2, Perceptron algorithm update

= ||θ(k)||2 + (y(i))2||x(i)||2 + 2y(i)(θ(k) · x(i))

≤ ||θ(k)||2 + (y(i))2||x(i)||2, since kth mistake =⇒ y(i)(θ(k) · x(i)) ≤ 0

= ||θ(k)||2 +R2, since (y(i))2||x(i)||2 = ||x(i)||2 ≤ R2, by assumption and (y(i))2 = 1

=⇒ ||θ(k+1)||2 ≤ kR2, by induction on k since (θ(i))2 = 0

=⇒ ||θ(k+1)|| ≤
√

(k)R

Part 3: Combine the bounds
kγ ≤ ||θ(k+1)|| ≤

√
(k)R

=⇒ k ≤ (R/γ)2

• Perceptron will not converge.

• However, we can achieve a similar bound on the number of mistakes made in one pass
(Freund, Schapire)

Main Takeaway: For linearly separable data, if the perceptron algorithm repeatedly cycles
through the data, it will converge in a finite number of steps.

10-301/10-601: Recitation 3 Page 5 of 14

3 Linear Regression

3.1 Defining the Objective Function

1. What does an objective function J(θ) do ? A function to measure how “good” the linear
model is

2. What are some properties of this function?

• Should be differentiable

• Preferably convex

3. What are some examples?

– Mean Squared Error 1
N

∑N
i=1 e

2
i

– Mean Absolute Error: 1
N

∑N
i=1 |ei|

3.2 Deriving the Closed-form Solution

We are given the following data where x is the input and y is the output:

x 1.0 2.0 3.0 4.0 5.0
y 2.0 4.0 7.0 8.0 11.0

Based on our inductive bias, we think that the linear hypothesis with no intercept should be
used here. We also want to use the Mean Squared Error as our objective function: 1

5

∑5
i=1(y

(i)−
wx(i))2, where y(i) is our ith data point and w is our weight. Using the closed-form method,
find w.

1. What is the closed-form formula for w?

J(w) =
1

5

5∑
i=1

(y(i) − wx(i))2

0 =
dJ(w)

dw
=

1

5

5∑
i=1

−2x(i)(y(i) − wx(i))

10-301/10-601: Recitation 3 Page 6 of 14

5∑
i=1

x(i)(y(i) − wx(i)) = 0

5∑
i=1

x(i)y(i) −
5∑

i=1

w(x(i))2 = 0

w
5∑

i=1

(x(i))2 =
5∑

i=1

x(i)y(i)

∴ w =

∑5
i=1 x

(i)y(i)∑5
i=1(x

(i))2

2. What is the value of w?

5∑
i=1

x(i)y(i) = 118

5∑
i=1

(x(i))2 = 55

w =

∑5
i=1 x

(i)y(i)∑5
i=1(x

(i))2

=
118

55
= 2.15

[Left as an exercise] We now extend the data set to include more features, x ∈ R:

x(1) x(2) x(3) x(4) x(5)

x1 1.0 2.0 3.0 4.0 5.0
x2 -2.0 -5.0 -6.0 -8.0 -11.0
x3 3.0 8.0 9.0 12.0 14.0
y 2.0 4.0 7.0 8.0 11.0

We again think that the linear hypothesis with no bias should be used here. We also want to
use the Mean Squared Error as our objective function:

1

N

N∑
i=1

(y(i) −wTx(i))2,

where w = [w1, w2, w3]
T , x(i) is the ith datapoint and y(i) is the ith y−value.

10-301/10-601: Recitation 3 Page 7 of 14

1. What is the closed-form formula for w1?
We can re-express:

J(w) =
1

N

N∑
i=1

(y(i) −wTx(i))2

as

J(w1, w2, w3) =
1

N

N∑
i=1

(y(i) − w1x
(i)
1 − w2x

(i)
2 − w3x

(i)
3)2

We now take the partial derivative w.r.t w1

0 =
∂J(w1, w2, w3)

∂w1

=
2

N

N∑
i=1

−x(i)1 (y(i) − w1x
(i)
1 − w2x

(i)
2 − w3x

(i)
3)

=
N∑
i=1

(x
(i)
1 y

(i) − w2x
(i)
2 x

(i)
1 − w3x

(i)
3 x

(i)
1)−

N∑
i=1

w1(x
(i)
1)2

w1

N∑
i=1

(x
(i)
1)2 =

N∑
i=1

(x
(i)
1 y

(i) − w2x
(i)
2 x

(i)
1 − w3x

(i)
3 x

(i)
1)

∴ w1 =

∑N
i=1(x

(i)
1 y

(i) − w2x
(i)
2 x

(i)
1 − w3x

(i)
3 x

(i)
1)∑N

i=1(x
(i)
1)2

Notice that to solve for w1, we need w2 and w3 and if you observe the equation, to solve
for w3, we need w1 and w2 etc. We can actually these 3 equations and 3 unknowns as a
series of simultaneous equations.

2. What is the closed-form matrix solution for w?
We will not go over the derivation now, but there is a convenient matrix solution for w:

ŵ = argmin J(w)

= (XTX)−1XTY

The design matrix X is given by:



1 −2 3

2 −5 8

3 −6 9

4 −8 12

5 −11 14



10-301/10-601: Recitation 3 Page 8 of 14

and

y =



2

4

7

8

11


Using the closed-form formula in class, we get

w =


2.36

−0.205

−0.218



10-301/10-601: Recitation 3 Page 9 of 14

4 Gradient Descent

4.1 Solving Linear Regression using Gradient Descent

x(1) x(2) x(3) x(4) x(5)

x1 1.0 2.0 3.0 4.0 5.0
x2 -2.0 -5.0 -6.0 -8.0 -11.0
x3 3.0 8.0 9.0 12.0 14.0
y 2.0 4.0 7.0 8.0 11.0

Now, we want to implement the gradient descent method.

Assuming that α = 0.1 and w has been initialized to [0, 0, 0]T , perform one iteration
of gradient descent:

1. What is the gradient of the objective function , J(w), w.r.t w: ∇wJ(w)

dJ(w)

dwk

=
1

5

5∑
i=1

−2x
(i)
k (y(i) −

3∑
j=1

wjx
(i)
j)

∇wJ(w) =



dJ(w)

dw1

dJ(w)

dw2

dJ(w)

dw3



=



1

5

5∑
i=1

−2x
(i)
1 (y(i) −

3∑
j=1

wjx
(i)
j)

1

5

5∑
i=1

−2x
(i)
2 (y(i) −

3∑
j=1

wjx
(i)
j)

1

5

5∑
i=1

−2x
(i)
3 (y(i) −

3∑
j=1

wjx
(i)
j)



2. How do we carry out the update rule?

We initialize:

w =

0
0
0



10-301/10-601: Recitation 3 Page 10 of 14

Follow the update rule:

w(k+1) = w(k) − α︸︷︷︸
“Cross-validated”

∇w|w=w(k)J(w)

, where k = 0 here

1

5

5∑
i=1

−2x(i)(y(i) −
3∑

j=1

wjx
(i)
j) =

−2

5
· (2 + 8 + 21 + 32 + 55)

= −47.2

1

5

5∑
i=1

−2x(i)(y(i) −
3∑

j=1

wjx
(i)
j) =

−2

5
· (−4− 20− 42− 64− 121)

= 100.4

1

5

5∑
i=1

−2x(i)(y(i) −
3∑

j=1

wjx
(i)
j) =

−2

5
· (6 + 32 + 63 + 96 + 154)

= −140.4

∴ w(1) = w(0) − α∇w|w=w(0)J(w)

=

0
0
0

− 0.1

 −47.2
100.4
−140.4


=

 4.72
−10.4
14.4


*Convexity of objective function ensures that the local min(max) of the func-
tion is the global min(max).

5 Decision Trees and Beyond

1. Decision Tree Classification with Continuous Attributes
Given the dataset D1 = {x(i), y}Ni=1 where x(i) ∈ R2, y ∈ {Yellow,Purple,Green} as
shown in Fig. 5, we wish to learn a decision tree for classifying such points. Provided
with a possible tree structure in Fig. 5, what values of α, β and leaf node predictions
could we use to perfectly classify the points? Now, draw the associated decision bound-
aries on the scatter plot.

10-301/10-601: Recitation 3 Page 11 of 14

Figure 5: Classification of 2D points, with Decision Tree to fill in

Solution:

Note how our decision tree actually creates partitions in the 2D space of points, and
each partition is associated with one predicted class. If we had trees of larger maximum
depth, we gain the ability to create even more fine-grained partitions of the feature
space, resulting in greater flexibility of predictions.

10-301/10-601: Recitation 3 Page 12 of 14

Decision Tree Regression with Continuous Attributes
Now instead if we had dataset D2 = {x(i), y}Ni=1 where x(i) ∈ R2, y ∈ R as shown in
Fig. 6, we wish to learn a decision tree for regression on such points. Using the same
tree structure and values of α, β as before, what values should each leaf node predict to
minimize the training Mean Squared Error (MSE) of our regression? Assume each leaf
node just predicts a constant.

Figure 6: Regression on 2D points, with Decision Tree to fill in

Solution:

In this example we see how decision trees can be used for regressions too. Since we
already know the splits, we partition up the feature space in the same way as before
where each partition yields a single constant as a prediction. Instead of predicting a
class, we want to predict a real number for each partition that will minimize our metric,
MSE. The mean value of y in each partition will be the prediction that minimizes MSE.

10-301/10-601: Recitation 3 Page 13 of 14

6 Summary

6.1 k-NN

Pros Cons Inductive bias When to use

• Simple, minimal
assumptions
made about
data distribution

• No training of
parameters

• Can apply to
multi-class
problems and
use different
metrics

• Becomes slow as
dataset grows

• Requires
homogeneous
features

• Selection of k is
tricky

• Imbalanced data
can lead to
misleading results

• Sensitive to outliers

• Similar (i.e.
nearby) points
should have
similar labels

• All label
dimensions are
created equal

• Small dataset
• Small

dimensionality
• Data is clean (no

missing data)
• Inductive bias is

strong for dataset

6.2 Linear regression

Pros Cons Inductive bias When to use

• Easy to
understand and
train

• Closed form
solution

• Sensitive to noise
(other than
zero-mean
Gaussian noise)

• The
relationship
between the
inputs x and
output y is
linear. i.e.
hypothesis
space is Linear
Functions

• Most cases (can be
extended by adding
non-linear feature
transformations)

6.3 Decision Tree

Pros Cons Inductive bias When to use

• Easy to
understand and
interpret

• Very fast for
inference

• Tree may grow very
large and tend to
overfit.

• Greedy behaviour
may be sub-optimal

• Prefer the
smallest tree
consistent w/
the training
data (i.e. 0
error rate)

• Most cases.
Random forests are
widely used in
industry.

10-301/10-601: Recitation 3 Page 14 of 14

6.4 Perceptron

Pros Cons Inductive bias When to use

• Easy to
understand and
works in an
online learning
setting.

• Provable
guarantees on
mistakes made if
the data is
known to be
linearly
separable
(perceptron
mistake-bound).

• No guarantees on
finding
maximum-margin
hyperplane (like in
SVM), only that
you will find a
separating
hyperplane.

• Output is sensitive
to noise in the
training data.

• The binary
classes are
separable in
the feature
space by a line.

• The basic
perceptron
algorithm is not
used much
anymore, but other
variants mentioned
in class such as
kernel perceptron
or structured
perceptron may
have more success.

	k-NN
	A Classification Example
	k-NN for Regression

	Perceptron
	Perceptron Mistake Bound Guarantee
	Definitions
	Theorem: Block, Novikoff

	Linear Regression
	Defining the Objective Function
	Deriving the Closed-form Solution

	Gradient Descent
	Solving Linear Regression using Gradient Descent

	Decision Trees and Beyond
	Summary
	k-NN
	Linear regression
	Decision Tree
	Perceptron

