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10-601: Introduction to Machine Learning

10/01/2021

This recitation consists of 3 parts: In part 1, we will go over how to represent text data
using two different feature extraction methods. Part 2 will go over the negative log
likelihood and gradient derivations for binary logistic regression, as well as a small
toy example. Part 3 will focus on multinomial logistic regression. The materials were
designed to help you with Homework 4.

1 Feature Representation for Sentiment Classification

In many machine learning problems, we will want to find appropriate representations for the
inputs of the algorithm we are developing. In Homework 4, we will work on using logistic
regression for a sentiment classification task, where our algorithm takes a paragraph of movie
review as the input and outputs a binary value denoting whether the review is positive or
not. To build an appropriate representation for the input (aka. the review text), we consider
two different representations – (1) a bag-of-word representation and (2) a representation
built on top of Word2vec word embeddings.

In this section, consider a scenario where we are interested in representing the following text:

a hot dog is not a sandwich because it is not square (1)

We consider the following dictionary (denoted below as Vocab) as the set of vocabulary
that we will consider. Note that the vocabulary dictionary might not contain all words in
the text shown above.

dictionary = {

"the": 0,

"square": 1,

"hot": 2,

"is": 3,

"not": 4,

"a": 5,

"happy": 6,

"sandwich": 7

}
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1. Bag-of-words Representation

A bag-of-words representation φ1(x) of text x is defined by φ1(x) = 1occur(x
(i), Vocab),

indicating which words in vocabulary Vocab of the dictionary occur at least once in the
movie review example x(i). Let x be the sample text defined above. Write the bag-of-
words representation of x. [0, 1, 1, 1, 1, 1, 0, 1]

2. Word Embedding Based Representation

(a) Word embeddings are reduced dimension vector representations (features) of words.
Given a single word in the dictionary, word embeddings can convert it to a vector
of fixed dimension. In Homework 4, we will provide a dictionary file specifying
pre-computed mappings between every word in Vocab and their corresponding
word embeddings. To facilitate better understanding towards word embeddings, we
produce a plot showing the spatial relationship between several sample words from
the vocabulary used in Homework 4:
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Figure 1: Visualization of word embeddings. We select a few positive words (shown in
green) and a few negative words (shown in red). To make the plot, we map the high-
dimensional word representations of these words to 2D space using PCA and then visualize
them in the scatter plot above.

Please comment on your observations and findings based on this plot. Closer-related
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words are located closer in the representation space, while farther-related words are
located farther from each other.

(b) One approach to build a representation for text is to average out the vector repre-
sentation of every word in the text that are in the dictionary. For example, given
text “a hot dog flies like a sandwich”, we can find the representation for this
text by taking the average of the vector representation of the words “a”, “hot”, “a”,
and “sandwich”.

Now suppose we have the following word embedding dictionary for building vector
representation of text (this is a toy example used for illustrative purposes; actual
word embeddinngs will have higher dimensions than this example):

dictionary = {

"the": [0.2, 0.3],

"square": [0.8, 0.9],

"hot": [0.1, -0.2],

"is": [0.1, 0.1],

"not": [-0.2, -0.3],

"a": [0.0, 0.0],

"happy": [0.4, 0.4],

"sandwich": [0.2, -0.3]

}

Write the word embedding based representation of the sample text define above.

φ2(x) =
1

9

(
f(square) + f(hot) + 2 · f(is) + 2 · f(not) + 2 · f(a) + f(sandwich)

)
=
[
0.1 0.0

]T
.
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2 Binary Logistic Regression

1. For binary logistic regression, we have the following dataset:

D =
{(

x(1), y(1)
)
, . . . ,

(
x(N), y(N)

)}
where x(i) ∈ RM , y(i) ∈ {0, 1}

A couple of reminders from lecture

1.

σ(θTx(i)) =
1

1 + exp(−θTx(i))
=

exp(θTx(i))

1 + exp(θTx(i))

2.

p
(
y(i) | x(i),θ

)
=

{
σ(θTx(i)) y(i) = 1

1− σ(θTx(i)) y(i) = 0

= σ(θTx(i))y
(i)

(1− σ(θTx(i)))(1−y
(i))

3.
φ(i) = σ(θTx(i))

4.
∂σ(z)

∂z
= σ(z)(1− σ(z))

5. if z = f(θ) then
∂σ(f(θ))

∂θj
= σ(f(θ))(1− σ(f(θ)))

∂f(θ)

∂θj

In binary logistic regression, this is

∂φ(i)

∂θj
= φ(i) ∗ (1− φ(i)) ∗ ∂θ

Tx(i)

∂θj

6. remember that
∂ log(f(z))

∂z
=

1

f(z)

∂f(z)

∂z

2. (a) Write down our objective function, J(θ), which is 1
N

times the negative conditional
log-likelihood of data, in terms of N and p

(
y(i) | x(i),θ

)
where θ ∈ RM . As usual,

assume y(i) are independent and identically distributed.
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J(θ) = − 1

N
log(

N∏
i=1

p
(
y(i) | x(i),θ

)
)

J(θ) = − 1

N

N∑
i=1

log(p
(
y(i) | x(i),θ

)
)

(b) Write J(θ) in terms of σ(θTx(i)). simplify as much as possible. Then write in terms
of φ(i)

J(θ) = − 1

N

N∑
i=1

log
(
σ(θTx(i))y

(i)

(1− σ(θTx(i)))(1−y
(i))
)

= − 1

N

N∑
i=1

(y(i) log
(
σ(θTx(i))

)
+ (1− y(i)) log

(
1− σ(θTx(i))

)
)

= − 1

N

N∑
i=1

(y(i) log
(
φ(i)
)

+ (1− y(i)) log
(
1− φ(i)

)
)

(c) In stochastic gradient descent, we use only a single x(i). Given φ(i) = σ(θTx(i)) and

J (i)(θ) = −y(i) log(φ(i))− (1− y(i)) log(1− φ(i))

Show that the partial derivative of J (i)(θ) with respect to the jth parameter θj is
as follows:

∂J (i)(θ)

∂θj
= (σ(θTx(i))− yi)x(i)j

Remember,
∂φ(i)

∂θj
= φ(i) ∗ (1− φ(i)) ∗ ∂θ

Tx(i)

∂θj

note
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∂θTx(i)

∂θj
= x

(i)
j

∂J (i)(θ)

∂θj
= − y

(i)

φ(i)

∂φ(i)

∂θj
− (1− y(i))

1− φ(i)

∂(1− φ(i))

∂θj

= − y
(i)

φ(i)

∂φ(i)

∂θj
+

(1− y(i))
1− φ(i)

∂φ(i)

∂θj

= − y
(i)

φ(i)
φ(i) ∗ (1− φ(i)) ∗ ∂θ

Tx(i)

∂θj
+

(1− y(i))
1− φ(i)

φ(i) ∗ (1− φ(i)) ∗ ∂θ
Tx(i)

∂θj

= (−y(i)(1− φ(i)) + (1− y(i))φ(i)))x
(i)
j

= (−y(i) + y(i)φ(i) + φ(i) − y(i)φ(i))x
(i)
j

= (φ(i) − y(i))x(i)
j

= (σ(θTx(i))− yi)x(i)
j

3. Let’s go through a toy problem.

Y X1 X2 X3

1 1 2 1
1 1 1 -1
0 1 -2 1

(a) What is J(θ) of above data given initial θ =

−2
2
1

?

J(θ) = −1
3
[log(σ(3)) + log(σ(−1)) + log(1− σ(−5))] ≈ 0.46

(b) Calculate ∂J(1)(θ)
∂θ1

, ∂J
(1)(θ)
∂θ2

and ∂J(1)(θ)
∂θ3

for first training example. Note that σ(3) ≈
0.95.
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∂J (1)(θ)

∂θ1
= (σ(3)− 1)1 = −0.05

∂J (1)(θ)

∂θ2
= (σ(3)− 1)2 = −0.10

∂J (1)(θ)

∂θ3
= (σ(3)− 1)1 = −0.05

(c) Calculate ∂J(2)(θ)
∂θ1

, ∂J
(2)(θ)
∂θ2

and ∂J(2)(θ)
∂θ3

for second training example. Note that σ(−1) ≈
0.25.

∂J (2)(θ)

∂θ1
= (σ(−1)− 1)1 = −0.75

∂J (2)(θ)

∂θ2
= (σ(−1)− 1)1 = −0.75

∂J (2)(θ)

∂θ3
= (σ(−1)− 1)− 1 = 0.75

(d) Assuming we are doing stochastic gradient descent with a learning rate of 1.0, what
are the updated parameters θ if we update θ using the second training example?

−2
2
1

− 1

−0.75
−0.75
0.75

 =

−1.25
2.75
0.25


(e) What is the new J(θ) after doing the above update? Should it decrease or increase?

J(θ) = 0.09

It should decrease for logistic classifier to learn.
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(f) Given a test example where (X1 = 1, X2 = 3, X3 = 4), what will the classifier
output following this update?
σ(θTX) > 0.5 =⇒ Y = 1
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3 Multinomial Logistic Regression (Optional Learning)

1. Definition

Multinomial logistic regression, also known as softmax regression or multiclass logistic
regression, is a generalization of binary logistic regression.

D =
{(

x(1), y(1)
)
, . . . ,

(
x(N), y(N)

)}
where x(i) ∈ RM , y(i) ∈ {1, . . . , K} for i = 1, . . . , N

Here N is the number of training examples, M is the number of features, and K is the
number of possible classes, which is usually greater than two to be interesting.

p
(
Y (i) = y(i) | x(i),Θ

)
=

exp
(
Θy(i)x

(i)
)∑K

j=1 exp (Θjx(i))
= softmax(Θx(i))y(i) (2)

where Θ is the parameter matrix of size K × (M + 1), and Θy(i) denotes the y(i)th row

of Θ, which is the parameter vector for the y(i)th class.

2. Suppose K = 4 and N = 10, M = 3. What could Θ look like?

Θ will have K rows because there are K distinct labels. Θ will have M+1 columns
because there are M features plus a bias term. So any K by (M+1) matrix is a possible
candidate for Θ.


0.5 −2 5 7
0 0.22 6 1
9 2 0.1 6
7 −0.5 0 1


3. A one-hot encoding is a vector representation of a one dimensional integer defined as

such: a vector c of length K is a one-hot encoding of integer n ⇐⇒ |c| = K and for
all j 6= n, cj = 0 and cn = 1. Give some examples of one-hot encodings where K = 5.

Let n = 1, =⇒ c = [1, 0, 0, 0, 0]T

Let n = 3, =⇒ c = [0, 0, 1, 0, 0]T

Let n = 4, =⇒ c = [0, 0, 0, 1, 0]T
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4. In multinomial logistic regression, we form the matrix T where the ith row of T is the
one-hot encoding of label y(i). Draw T if y = [1, 3, 1, 4, 4]T and K = 4.


1 0 0 0
0 0 1 0
1 0 0 0
0 0 0 1
0 0 0 1
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