
Recitation 6
Neural Networks

10-301/10-601: Introduction to Machine Learning

10/15/2021

1 Forward Propagation Explained

Forward Propagation is the process of calculating the value of your loss function, given data,
weights and activation functions. Given the input data x, we can transform it by the given weights,
α, then apply the corresponding activation function to it and finally pass the result to the next
layer. Forward propagation does not involve taking derivatives and proceeds from the input layer
to the output layer.

Figure 1: A One Hidden Layer Neural Network

For example, using the network shown in Figure 1, we can calculate the value of z1 in two steps.
First, we need to multiply the input values by their weights and sum them together. Assume for
the sake of notation that the bias term (marked as +1 in figure, is x0)

a1 =
2∑
i=0

α1,ixi (1)

z1 = tanh a1 (2)

1. Why do we include a bias term in the input and in the hidden-layer?

Similar to how an intercept term in linear regression allows it to better fit data, the bias term
helps the neural network better fit its data as well.

2. Why do we need to use nonlinear activation functions in our neural net?

A neural network with only linear activation functions would be no different than a linear
regression. (Try forward propagating with only linear functions on the given example)



10-301/10-601: Recitation 6 Page 2 of 11 10/15/21

2 Backward Propagation Explained

Backward propagation Given a Neural Network and a corresponding loss function J(θ), back-
propagation gives us the gradient of the loss function with respect to the weights of the neural
network. The method is called backward propagation because we calculate the gradients of the
final layer of weights first, then proceed backward to the first layer. In a simple neural network
with one hidden layer, the partial derivatives that we need for learning are ∂J

∂αij
and ∂J

∂βkj
, and we

need to apply chain rule recursively to obtain these. Note that in implementation, it is easier to
use matrix/vector forms to conduct computations.

Figure 2: Extended Version of Previous Neural Network

Although back propagation may seem really tricky, it becomes very simple if you break up the
process into individual layers. Above in Figure 2 is an extended version of the previous neural
network above. Here, each layer is broken into its linear combination stage and its activation
stage. Here is an example of breaking down the partial loss with respect to the weight α1,1:

∂J

∂α1,1

=
∂J

∂ŷ

∂ŷ

∂α1,1

(3)

=
∂J

∂ŷ

∂ŷ

∂b1

∂b1
∂α1,1

(4)

=
∂J

∂ŷ

∂ŷ

∂b1

∂b1
∂z1

∂z1
∂α1,1

(5)

=
∂J

∂ŷ

∂ŷ

∂b1

∂b1
∂z1

∂z1
∂a1

∂a1
∂α1,1

(6)

1. Many gradients are calculated in back propagation. Which of these gradients directly update
the weights? Do not include intermediate value(s) used to calculate these gradient(s).
The gradients with respect to α and β are used in updating. The rest are intermediate values
used to calculate these two gradients



10-301/10-601: Recitation 6 Page 3 of 11 10/15/21

3 Neural Network Example Explained

Figure 3: Neural Network For Example Questions

Network Overview Consider the neural network with one hidden layer shown in Figure 3.
The input layer consists of 2 features x = [x1, x2]

T , the hidden layer has 3 nodes with output
z = [z1, z2, z3]

T , and the output layer is a scalar ŷ. We also add a bias to the input, x0 = 1 and
the output of the hidden layer z0 = 1, both of which are fixed to 1.

α is the matrix of weights from the inputs to the hidden layer and β is the matrix of weights from
the hidden layer to the output layer. αj,i represents the weight going to the node zj in the hidden
layer from the node xi in the input layer (e.g. α1,2 is the weight from x2 to z1), and β is defined
similarly. We will use a tanh activation function for the hidden layer and no activation for the
output layer.

Network Details Equivalently, we define each of the following.

The input:

x = [x0, x1, x2]
T (7)

Linear combination at the first (hidden) layer:

aj =
2∑
i=0

αj,i · xi, ∀j ∈ {1, . . . , 3} (8)

Activation at the first (hidden) layer:

zj = tanh(aj) =
eaj − e−aj
eaj + e−aj

, ∀j ∈ {1, . . . , 3} (9)

Linear combination at the second (output) layer:

ŷ =
3∑
j=0

βj · zj, (10)

Here we fold in the bias term αj,0 by thinking of x0 = 1, and fold in β0 by thinking of z0 = 1.



10-301/10-601: Recitation 6 Page 4 of 11 10/15/21

Loss We will use Squared error loss, `(ŷ, y):

`(ŷ, y) =
1

2
(ŷ − y)2 (11)

We initialize the network weights as:

α =

0 1 2
2 1 0
0 2 0



β =
[
0 1 2 2

]
For the following questions, we use y = 3.

1. Scalar Form: Given x1 = 1, x2 = 2,

• Forward: What are the values of a1, `?

a1 =
2∑
i=0

α1,ixi = z1 = ŷ =

a2 =
2∑
i=0

α2,ixi = z2 = ` =

a3 =
2∑
i=0

α3,ixi = z3 =

a1 =
2∑
i=0

α1,ixi = 5 z1 = 0.99991 ŷ = 4.91807

a2 =
2∑
i=0

α2,ixi = 3 z2 = 0.99505 ` = 1.83950

a3 =
2∑
i=0

α3,ixi = 2 z3 = 0.96403



10-301/10-601: Recitation 6 Page 5 of 11 10/15/21

• Backward: What are the values of ∂`
∂α1,1

, ∂`
∂β1

Hint: ∂ tanh(x)
∂x

= 1− tanh(x)2

Table 1: tanh values

x 1 2 3 4 5 6 7 8 9

tanh(x) 0.76159 0.96403 0.99505 0.99933 0.99991 0.99999 0.99999 0.99999 0.99999

∂`

∂α1,1

=
∂`

∂ŷ

∂ŷ

∂z1

∂z1
∂a1

∂a1
∂α1,1

∂`

∂α1,1

=
∂`

∂ŷ

∂ŷ

∂z1

∂z1
∂a1

∂a1
∂α1,1

= (ŷ − y)β1(1− tanh(a1)
2)x1

= (4.91807− 3) ∗ 1 ∗ (1− tanh(5)2) ∗ 1

= 0.000348

∂`

∂β1
=
∂`

∂ŷ

∂ŷ

∂β1

As a reminder, we were given that ` = 1
2
(ŷ − y)2 and ŷ =

∑3
j=0 βjzj

So we can calculate:

∂`

∂β1
=
∂`

∂ŷ

∂ŷ

∂β1

=
∂

∂ŷ

[
1

2
(ŷ − y)2

]
∂

∂β1

[
3∑
j=0

βjzj

]
= (ŷ − y) z1 = (4.91807− 3) ∗ 0.99991 = 1.9179



10-301/10-601: Recitation 6 Page 6 of 11 10/15/21

2. Vector Form: The vector form of forward computation is:

a = x̂α>

z = tanh(a)

ŷ = ẑβ>
(12)

Given x =
[
0 1

]
,

• Forward: Find `?

Denote x̂ as the augmented x by appending 1 to the front to obtain a compact represen-
tation that includes the bias term.

a = x̂α> =
[
1 0 1

] 0 2 0
1 1 2
2 0 0

 =
[
2 2 0

]
z = tanh a =

[
0.96403 0.96403 0

]
We apply the same trick to z to obtain ẑ =

[
1 0.96403 0.96403 0

]
ŷ = ẑβ> =

[
1 0.96403 0.96403 0

] 
0
1
2
2

 = 3× 0.96403 = 2.89209

` = 1
2
(ŷ − 3)2 = 0.005822284



10-301/10-601: Recitation 6 Page 7 of 11 10/15/21

• Backward: What are the values of ∂`
∂α

, ∂`
∂β

?

Denote β̂ as β without the first entry.

∂`

∂a
=
∂`

∂ŷ

∂ŷ

∂z

∂z

∂a

= (ŷ − y) · β̂ · diag(1− tanh2(a))

= (ŷ − y) · β̂ � (1− z2) (� is element-wise multiplication)

= −0.10791
[
1 2 2

] 1− tanh2(a1) 0 0
0 1− tanh2(a2) 0
0 0 1− tanh2(a3)


= −0.10791

[
1 2 2

] 0.07065082 0 0
0 0.07065082 0
0 0 1


∂`

∂αji
=

∂`

∂aj

∂aj
∂αji

=
∂`

∂aj
xi

∂`

∂α
=
∂`

∂a
x̂T

=

−0.00762444 0 −0.00762444
−0.01524889 0 −0.01524889
−0.21583452 0 −0.21583452


∂`

∂β
=
∂`

∂ŷ

∂ŷ

∂β
= (ŷ − 3)ẑT =

[
−0.10791 −0.10402 −0.10402 0

]



10-301/10-601: Recitation 6 Page 8 of 11 10/15/21

Given x =

[
2
3

]
,

• Forward: Find `?

a = αx̂ =

0 1 2
2 1 0
0 2 0

1
2
3

 =

8
4
4


z = tanh a =

0.9999
0.9993
0.9993



ẑ =


1

0.9999
0.9993
0.9993



ŷ = βẑ =
[
0 1 2 2

] 
1

0.9999
0.9993
0.9993

 = 4.997316

` = 1
2
(ŷ − 3)2 = 1.9946

• Backward: What are the values of ∂`
∂α

, ∂`
∂β

?

Define β̂ similarly.

∂`

∂a
=
∂`

∂ŷ

∂ŷ

∂z

∂z

∂a
= (ŷ − y) · β̂T � (1− z2) =

8.992 ∗ 10−7

5.357 ∗ 10−3

5.357 ∗ 10−3


∂`

∂αji
=

∂`

∂aj

∂aj
∂αji

=
∂`

∂aj
xi

∂`

∂α
=
∂`

∂a
x̂T =

8.992 ∗ 10−7

5.357 ∗ 10−3

5.357 ∗ 10−3

 [1 2 3
]

=

8.998 ∗ 10−7 1.798 ∗ 10−6 2.698 ∗ 10−6

5.357 ∗ 10−3 1.071 ∗ 10−2 1.607 ∗ 10−2

5.357 ∗ 10−3 1.071 ∗ 10−2 1.607 ∗ 10−2


∂`

∂β
=
∂`

∂ŷ

∂ŷ

∂β
= (ŷ − y)ẑT =

[
1.9973 1.9973 1.9960 1.9960

]



10-301/10-601: Recitation 6 Page 9 of 11 10/15/21

4 CNNs Explained

4.1 Overview

4.1.1 Motivation

When working with large inputs, such as images, we often do not have enough data to train a
fully-connected dense network. Using filters slide over the input via convolution allows us to use
fewer parameters while still processing the entire input through multiple layers, allowing us to
train networks with much less data.

When working with certain types of data, we are unconcerned with where in an input a particular
feature appears. If we only care about whether a feature is present or not, we can take advantage
of the translation invariance provided by using convolutional layers. This allows us to use the
same filter for detecting a feature regardless of where in the image the feature occurs.

4.1.2 Input

While CNNs can be applied to many different types of data, we often consider them in terms
of images. Simple images are matrices (or 2-tensors), with the dimensions height × width. An
example would be a grayscale image. More complex images are represented by 3-tensors, with
dimensions height×width× channels. For example, an RGB image may have 3 channels: one for
each of red, green, and blue pixel values. Each of these channels is a 2-dimensional matrix with
dimensions height× width containing a value for each pixel in the image.

4.1.3 Kernels and Filters

Similar to inputs, kernel can take on many different forms. We’ll usually consider kernels rep-
resented by matrices, with shape height × width. We often work with square kernels. We also
generally work with kernels with odd dimensions: e.g. 3× 3 or 5× 5 kernels.

You may have heard the terms filter and kernel used interchangeably. The term kernel refers to a
2-tensor, or matrix, of weights. The term filter refers to the set of kernels being used. If only one
is used, as you’ll usually see in this class, then the terms filter and kernel are interchangeable.

4.1.4 Stride

The stride refers to how we slide our kernel across a given input. If at each step, we move our
kernel by one position on the input, then our stride is 1. If we skip a possible position and move
our kernel by 2 spots each time, our stride is 2.

4.1.5 Padding

When convolving a kernel with an image, we often want to make sure each part of the kernel
is applied to each part of the image. This presents a problem at the borders of the image: for
example, only the top part of the kernel will ever interact with the top part of the image. We
resolve this issue by padding the input: adding fake values (according to one of a variety of rules)
around the borders of the image to make it artificially larger, such that every part of our kernel
can now interact with every part of the real image data. Padding is usually applied equally to all



10-301/10-601: Recitation 6 Page 10 of 11 10/15/21

sides of the image: if we pad an image of size 10× 10 with a padding of 2, we have an augmented
image of size 14× 14.

4.1.6 Output Size

Input size, filter size, stride, and padding all come together when determining the output size of
a given layer. Below, we build up the formula for output size by adding these one-by-one. The
formula we’ll construct involves a single square kernel for the filter and uniform padding and stride
values with a 3-channel image.

• Suppose we have an image of size H ×W and a kernel of size 1× 1. Our output is naturally
of size H ×W .

• Suppose we have an image of size H ×W and a kernel of size K ×K. Our output is now of
size (H −K + 1)× (W −K + 1).

• Suppose we have an image of size H ×W , a kernel of size K ×K, and a padding P . Our
output is now of size (H + 2P −K + 1)× (W + 2P −K + 1).

• Suppose we have an image of size H ×W , a kernel of size K ×K, a padding P , and a stride
S. Our output is now of size (

⌊
H+2P−K

S

⌋
+ 1)× (

⌊
W+2P−K

S

⌋
+ 1).

• Suppose we have an image of size H ×W ×D, a kernel of size K ×K, a padding P , and a
stride S. Our output is now of size (

⌊
H+2P−K

S

⌋
+ 1)× (

⌊
W+2P−K

S

⌋
+ 1)×D.

We can extend this formula to work with multi-kernel filters, non-square kernels, and other pa-
rameter options.



10-301/10-601: Recitation 6 Page 11 of 11 10/15/21

(a) X (b) F

4.2 Problems

(a) Let X be convolved with F using no padding and a stride of 1 to produce an output Y . What
is value of the output Y ?

Y =

[
−2 6
2 2

]
. Each of the values correspond to applying the filter to the top left, top right,

bottom left, and bottom right parts of the image.

Top left: −2 = (1 ∗ 2 + 0 ∗ 3 + 1 ∗ −1) + (−1 ∗ 4 + 0 ∗ 1 +−1 ∗ 0) + (1 ∗ −2 + 0 ∗ 1 + 1 ∗ 3).

Top right: 6 = (1 ∗ 3 + 0 ∗ −1 + 1 ∗ 2) + (−1 ∗ 1 + 0 ∗ 0 +−1 ∗ 1) + (1 ∗ 1 + 0 ∗ 3 + 1 ∗ 2)

Bottom left: 2 = (1 ∗ 4 + 0 ∗ 1 + 1 ∗ 0) + (−1 ∗−2 + 0 ∗ 1 +−1 ∗ 3) + (1 ∗−1 + 0 ∗−2 + 1 ∗ 0)

Bottom right: 2 = (1 ∗ 1 + 0 ∗ 0 + 1 ∗ 1) + (−1 ∗ 1 + 0 ∗ 3 +−1 ∗ 2) + (1 ∗ −2 + 0 ∗ 0 + 1 ∗ 5)

(b) Suppose you had an input feature map of size (height × width) 9 × 6 and filter size 5 × 5,
using a padding of 4 and a stride of 3, what would be the resulting output size? Write your
answer in the format height × width.
5× 4.

H ×W = 9× 6

H + 2P ×W + 2P = 17× 14

H + 2P −K ×W + 2P −K = 12× 9⌊
H + 2P −K

S

⌋
×
⌊
W + 2P −K

S

⌋
= 4× 3⌊

H + 2P −K
S

⌋
+ 1×

⌊
W + 2P −K

S

⌋
+ 1 = 5× 4


	Forward Propagation Explained
	Backward Propagation Explained
	Neural Network Example Explained
	CNNs Explained
	Overview
	Motivation
	Input
	Kernels and Filters
	Stride
	Padding
	Output Size

	Problems


