
Recitation 8
Hidden Markov Models and Bayes Net

10-601: Introduction to Machine Learning

11/3/2021

1 HMMs

You are given the following training data:

win_C league_C Liverpool_D

win_C Liverpool_D league_C

Liverpool_D win_C

Figure 1: Visualization of Sequences
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You are also given the following observed (validation) data: Liverpool win league

In this question, let each observed state xt ∈ {1, 2, 3}, where 1 corresponds to win, 2 cor-
responds to league, and 3 corresponds to Liverpool. Let each hidden state Yt ∈ {C,D},
where s1 = C and s2 = D.

1. First, we need to train our HMM by generating the initial probabilities: π, the tran-
sition probability matrix: B, the emission probability matrix: A.

(a) Find π. Recall that πj = P (Y1 = sj).

(b) Find Transition Matrix: B. Recall that Bjk = P (Yt = sk | Yt−1 = sj)

(c) Find Emission Matrix: A. Recall that Ajk = P (Xt = k | Yt = sj).
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2. What is the likelihood of observing this output?
Recall that:

αt(k) = P (x1:t, Yt = sk)

βt(k) = P (xt+1:T |Yt = sk)

We also have the recursive procedure:

(a) α1(j) = πjAjx1 .

(b) For t > 1, αt(j) = Ajxt

∑J
k=1 αt−1(k)Bkj
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You are now told that the observed data has the following tags:

Liverpool_D win_C league_D

3. Given the observed sequence of words (denote ~x = [Liverpool, win, league]T ), what is
the probability of these assigned tags P (Y1 = D|~x), P (Y2 = C|~x), P (Y3 = D|~x)?

Recall that:

P (Yt = sk|~x) =
αt(sk)βt(sk)

P (~x)

So, we need to find βT

We also have a similar recursive procedure

(a) βT (j) = 1 (All states could be ending states)

(b) For 1 ≤ t ≤ T −1, βt(j) =
∑J

k=1Akxt+1βt+1(k)Bjk (Generate xt+1 from any state)
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4. The sequence of words you observe is again the same: Liverpool win league

However, you are only given the tag of the last word: league_C

Using the Viterbi Algorithm, what is the most likely sequence of hidden states?

Recall that:
ωt(sk) = max

y1:t−1

P (x1:t, y1:t−1, yt = sk)

bt(sk) = arg max
y1:t−1

P (x1:t, y1:t−1, yt = sk)

Also, the recursive procedure for the Viterbi algorithm is as follows:

(a) ω0(sk) = 1 for sk = START and 0 for all other states.

(b) For t > 1,

• ωt(sj) = max
1≤k≤J

ωt−1(sk)P (xt|Yt = sj)P (Yt = sj|Yt−1 = sk)

= max
1≤k≤J

ωt−1(sk)AjxtBkj

• bt(sj) = arg max
1≤k≤J

ωt−1(sk)P (xt|Yt = sj)P (Yt = sj|Yt−1 = sk)

= arg max
1≤k≤J

ωt−1(sk)AjxtBkj

What is the most likely sequence of tags given the observed data? (Select C if tie)
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2 Working in Log-space

2.1 Motivation

Given the following series of probability values:

P (x1 = 1) P (x2 = 1 | x1 = 1) P (x3 = 1 | x2 = 1, x1 = 1)
0.002 0.004 0.003

We want to find P (x1 = 1, x2 = 1, x3 = 1). Suppose we have a calculator which only has 4
decimal places of precision, so it can only store values of format X.XXXX

1. What is the correct value of P (x1 = 1, x2 = 1, x3 = 1) without any precision limits?

P (x1 = 1, x2 = 1, x3 = 1) =

2. What is the value of P (x1 = 1, x2 = 1, x3 = 1) using our faulty calculator?

P (x1 = 1, x2 = 1) =

P (x1 = 1, x2 = 1, x3 = 1) =

3. How do the values of P (x1 = 1, x2 = 1, x3 = 1) from part (1) and (2) compare?

4. What is the value of P (x1 = 1, x2 = 1, x3 = 1) if we perform the same computation
but in log space?

log
(
P (x1 = 1, x2 = 1, x3 = 1)

)
=

This is good! But we can use the log sum exp trick to extend its use to even smaller
scales.
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2.2 Forward and Backward Algorithm in Log Space

In the forward algorithm, recall that the α’s can be computed using the recursive procedure:

• α1(j) = πjAjx1

• For t > 1, αt(j) = Ajxt

∑J
k=1 αt−1(k)Bkj

1. Derive log
(
α1(j)

)
in terms of log(πj) and log(Ajx1)

2. Derive log
(
αt(j)

)
in terms of log

(
αt−1(k)

)
and logAkj

In the backward algorithm, we also have a similar recursive procedure:

• βT (j) = 1

• For 1 ≤ t ≤ T − 1, βt(j) =
∑J

k=1Akxt+1βt+1(k)Bjk

1. Derive log
(
βT (j)

)
2. Derive log

(
βt(j)

)
in terms of log(Akxt+1), log

(
βt+1(k)

)
, and log(Bjk)
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3 Bayesian Networks

3.1 Practice problems

X3

X1 X2

X4 X5

Figure 2: Graphical Model

1. Write down the factorization of the above directed graphical model.

P (X1, X2, X3, X4, X5)
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