RECITATION 8 HIDDEN MARKOV MODELS AND BAYES NET

10-601: Introduction to Machine Learning 11/3/2021

1 HMMs

You are given the following training data:

win_C league_C Liverpool_D

win_C Liverpool_D league_C

Liverpool_D win_C

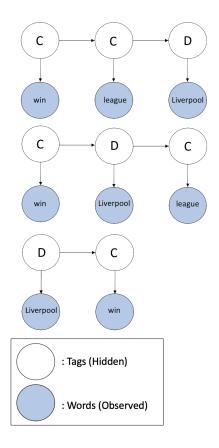


Figure 1: Visualization of Sequences

You are also given the following observed (validation) data: Liverpool win league

In this question, let each observed state $x_t \in \{1, 2, 3\}$, where 1 corresponds to win, 2 corresponds to league, and 3 corresponds to Liverpool. Let each hidden state $Y_t \in \{C, D\}$, where $s_1 = C$ and $s_2 = D$.

- 1. First, we need to train our HMM by generating the initial probabilities: π , the transition probability matrix: **B**, the emission probability matrix: **A**.
 - (a) Find $\boldsymbol{\pi}$. Recall that $\pi_j = P(Y_1 = s_j)$.
 - (b) Find Transition Matrix: **B**. Recall that $B_{jk} = P(Y_t = s_k | Y_{t-1} = s_j)$
 - (c) Find Emission Matrix: **A**. Recall that $A_{jk} = P(X_t = k | Y_t = s_j)$.

2. What is the likelihood of observing this output? Recall that:

$$\alpha_t(k) = P(x_{1:t}, Y_t = s_k)$$

$$\beta_t(k) = P(x_{t+1:T}|Y_t = s_k)$$

We also have the recursive procedure:

- (a) $\alpha_1(j) = \pi_j A_{jx_1}$.
- (b) For t > 1, $\alpha_t(j) = A_{jx_t} \sum_{k=1}^J \alpha_{t-1}(k) B_{kj}$

You are now told that the observed data has the following tags:

Liverpool_D win_C league_D

3. Given the observed sequence of words (denote $\vec{x} = [\text{Liverpool}, \text{win}, \text{league}]^T$), what is the probability of these assigned tags $P(Y_1 = D | \vec{x}), P(Y_2 = C | \vec{x}), P(Y_3 = D | \vec{x})$?

Recall that:

$$P(Y_t = s_k | \vec{x}) = \frac{\alpha_t(s_k)\beta_t(s_k)}{P(\vec{x})}$$

So, we need to find β_T

We also have a similar recursive procedure

- (a) $\beta_T(j) = 1$ (All states could be ending states)
- (b) For $1 \le t \le T 1$, $\beta_t(j) = \sum_{k=1}^J A_{kx_{t+1}} \beta_{t+1}(k) B_{jk}$ (Generate x_{t+1} from any state)

4. The sequence of words you observe is again the same: Liverpool win league However, you are only given the tag of the last word: league_C Using the Viterbi Algorithm, what is the most likely sequence of hidden states? Recall that:

$$\omega_t(s_k) = \max_{y_{1:t-1}} P(x_{1:t}, y_{1:t-1}, y_t = s_k)$$

$$b_t(s_k) = \arg_{y_{1:t-1}} P(x_{1:t}, y_{1:t-1}, y_t = s_k)$$

Also, the recursive procedure for the Viterbi algorithm is as follows:

- (a) $\omega_0(s_k) = 1$ for $s_k = \text{START}$ and 0 for all other states.
- (b) For t > 1,

•
$$\omega_t(s_j) = \max_{1 \le k \le J} \omega_{t-1}(s_k) P(x_t | Y_t = s_j) P(Y_t = s_j | Y_{t-1} = s_k)$$

 $= \max_{1 \le k \le J} \omega_{t-1}(s_k) A_{jx_t} B_{kj}$
• $b_t(s_j) = \arg\max_{1 \le k \le J} \omega_{t-1}(s_k) P(x_t | Y_t = s_j) P(Y_t = s_j | Y_{t-1} = s_k)$
 $= \arg\max_{1 \le k \le J} \omega_{t-1}(s_k) A_{jx_t} B_{kj}$

What is the most likely sequence of tags given the observed data? (Select C if tie)

2 Working in Log-space

2.1 Motivation

Given the following series of probability values:

$P(x_1 = 1)$	$P(x_2 = 1 \mid x_1 = 1)$	$P(x_3 = 1 \mid x_2 = 1, x_1 = 1)$
0.002	0.004	0.003

We want to find $P(x_1 = 1, x_2 = 1, x_3 = 1)$. Suppose we have a calculator which only has 4 decimal places of precision, so it can only store values of format X.XXXX

- 1. What is the correct value of $P(x_1 = 1, x_2 = 1, x_3 = 1)$ without any precision limits? $P(x_1 = 1, x_2 = 1, x_3 = 1) =$
- 2. What is the value of $P(x_1 = 1, x_2 = 1, x_3 = 1)$ using our faulty calculator?

$$P(x_1 = 1, x_2 = 1) =$$

$$P(x_1 = 1, x_2 = 1, x_3 = 1) =$$

- 3. How do the values of $P(x_1 = 1, x_2 = 1, x_3 = 1)$ from part (1) and (2) compare?
- 4. What is the value of $P(x_1 = 1, x_2 = 1, x_3 = 1)$ if we perform the same computation but in log space?

 $\log \left(P(x_1 = 1, x_2 = 1, x_3 = 1) \right) =$

This is good! But we can use the log sum exp trick to extend its use to even smaller scales.

11/3/2021

2.2 Forward and Backward Algorithm in Log Space

In the forward algorithm, recall that the α 's can be computed using the recursive procedure:

- $\alpha_1(j) = \pi_j A_{jx_1}$
- For t > 1, $\alpha_t(j) = A_{jx_t} \sum_{k=1}^J \alpha_{t-1}(k) B_{kj}$
- 1. Derive $\log(\alpha_1(j))$ in terms of $\log(\pi_j)$ and $\log(A_{jx_1})$
- 2. Derive $\log(\alpha_t(j))$ in terms of $\log(\alpha_{t-1}(k))$ and $\log A_{kj}$

In the backward algorithm, we also have a similar recursive procedure:

- $\beta_T(j) = 1$
- For $1 \le t \le T 1$, $\beta_t(j) = \sum_{k=1}^J A_{kx_{t+1}} \beta_{t+1}(k) B_{jk}$
- 1. Derive $\log (\beta_T(j))$
- 2. Derive $\log(\beta_t(j))$ in terms of $\log(A_{kx_{t+1}})$, $\log(\beta_{t+1}(k))$, and $\log(B_{jk})$

3 Bayesian Networks

3.1 Practice problems

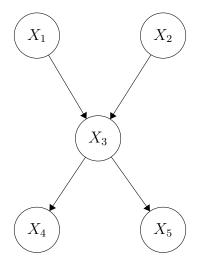


Figure 2: Graphical Model

1. Write down the factorization of the above directed graphical model. $P(X_1, X_2, X_3, X_4, X_5)$