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1 HMMs

You are given the following training data:

win_C league_C Liverpool_D
win_C Liverpool_D league_C

Liverpool_ D win_C
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Figure 1: Visualization of Sequences
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You are also given the following observed (validation) data: Liverpool win league

In this question, let each observed state z; € {1,2,3}, where 1 corresponds to win, 2 cor-
responds to league, and 3 corresponds to Liverpool. Let each hidden state Y; € {C, D},
where s; = C and s, = D.

1. First, we need to train our HMM by generating the initial probabilities: 7, the tran-
sition probability matrix: B, the emission probability matrix: A.

(a) Find 7. Recall that m; = P(Y; = s;).

e FFind count matrix

Count Count
C 9 Pseudocount C 3
D 1 D 2

e Get probability matrix :
T= C 3/5
D 2/5

(b) Find Transition Matrix: B. Recall that Bj, = P(Y; = s¢ | Yi_1 = s;)

e Find count matrix

C D C D
C 1 2 Pseudocount C 2 3
D 2 0 D 3 1

e Get Transition Probability matrix B:

C D
S

(c) Find Emission Matrix: A. Recall that A;;, = P(X, =k | Y, = s;).

e FFind count matrix

win league Liverpool 7 win league Liverpool
C 3 2 0 Pseudocount C 4 3 1
D 00 3 D 1 14

e Get Emission Probability matrix A:

win league Liverpool

{1/2 3/8 1/8}
1/6 1/6 2/3

A= (C
D
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2. What is the likelihood of observing this output?
Recall that:
(k) = P(x1.4,Y: = sy)

Bi(k) = P(zy1.7|Yy = s)
We also have the recursive procedure:
(&) ai(j) = m;Aj, -
(b) Fort > 1, ay(j) = Ay, 320, v 1 (k) Bij
We want to find:
P(X, = Liverpool, Xy = win, X3 = league)
= ZytEC’,D P(z1 = Liverpool, xy = win, x3 = league, Y; = y;)

= ZyteC,D a3 (yr)

ap = P(x1,y1) = P(zi|y1) - P(y1) = Azom
— 061(0) _ |Tc *AC,JQ _ | Tc *AC,Liverpool o 1/8 o 3/5 - 0.075
B al(D) B D *AC,UH N D *AD,Liverpool n 2/3 2/5 o 0.26667
Qg = P($1a$2,yz) = P($2|92) ’ (P(?J2|?/1) ’ 041) = A,l © (BTCH)

_ [Acwin * 2yeepy 01(y) * Bye] _ [1/2] ([2/5 3/5 T 0.075 ~ [0.11500125
"~ [ Apwin * Yyeqopy @ (ye) * Byp| — |1/6 3/4 1/4| [0.26667| ) — |0.01861125

as = Ay o (BTay)

_[38] (215 3/5 " 70.11500125] \ _ [0.02248460156
~|1/6 3/4 1/4| [0.01861125| ) ~ [0.01227559375

Since P(x; = Liverpool, zs = win, z3 = league) = Z as(yy)
yreC,D

.. P(x1 = Liverpool, rs = win, 13 = league)
= 0.02248460156 4 0.01227559375
—=1{0.03476019531 |
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You are now told that the observed data has the following tags:

Liverpool_D win_C league_D

3. Given the observed sequence of words (denote & = [Liverpool, win, league]”), what is
the probability of these assigned tags P(Y; = D|Z), P(Yz; = C|¥), P(Ys = D|¥)?

Recall that:
v (s) By (s1)

So, we need to find Sr
We also have a similar recursive procedure
(a) Br(j) =1 (All states could be ending states)
(b) For 1 <t <T—1, Bi(j) = 327_, Akas, Brs1(k)Bji (Generate x4, from any state)

Remember that: [;(s;) = P(xiy1.7|Y: = sk) and Br(sg) =1

Using matrix notation:

P = B(A,xg © 53) = B(A,z % /53)

Recall that: )
3/8 1 )
Ay = [1/6} and 3 = [J ,since T'=3

0.25
P2 = [0.3229}

Now, we go on to solve [,
B = B(A,mz o 52) = B(A,l o /32)
Again, recall that:
C[1/2] o025
Ax = {1/6} and fz = [0.3229}

= 0.08229
P 0.1072
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Now, we have our o and [ matrix:

Py,

P, = C7) =

P(Y; = C[7) =

= D‘f) =

C D
1 0.0750 0.26667
0.1150 0.0186
3 0.0225 0.0123

\)

C D
1 0.0823 0.1072
0.2500 0.3229
3 1.0000 1.0000

[\

a1(D)B1(D)

P(Z)
~0.26667 x 0.1072
©0.03476019531
= 0.8224068865

az(C)2(C)

P(Z)
~0.1150 x 0.2500
~0.03476019531
= 0.8270954678

063(0)53(0)
P(7)
0.0225 x 1
~0.03476019531
= 0.6472921052
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4. The sequence of words you observe is again the same: Liverpool win league
However, you are only given the tag of the last word: league_C
Using the Viterbi Algorithm, what is the most likely sequence of hidden states?
Recall that:

i) = max P yia 1,00 = 50)
t—

bi(sk) = argmax P(Z1., Y1u—1, Yt = Sk)
Y1:t—1

Also, the recursive procedure for the Viterbi algorithm is as follows:

(a) wo(sg) =1 for s, = START and 0 for all other states.

(b) Fort > 1,
® Wt(3j> = lglgfjwt—l(sk)P(ﬂﬁtWt = 3j>P<Y;t = Sj|Yt—1 = Si)
= max wi—1(sk) Ay, Brj
o bi(s;) = argmaxwy_1(s)P(ze|Y; = s;) P(Y: = 8;|Yie1 = sg)

1<k<J

= argmax w1 (k) Az, B;
1<k<J

What is the most likely sequence of tags given the observed data? (Select C if tie)

(a) Set up the matrices w and b

C D START
wo 0O 0 1
w= w - - -
Wa - - =
ws - - =
and
C D
bl — -
b= by o
b3 - -

Initialize wy(START) =1

(b) Solve for matrix entries using Dynamic Programming:
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wi(C) = max P(x; = Liverpool|Y; = C)wy(s;)P(Y; =C)

5;€C,D,START

3

b1(C) = START

wi(D) = max P(x; = Liverpool|Y; = D)wy(s;)P(Yy =D)

5;€C,D,START

2
_2.4.2
3 5
4
15

w2(C) = max P(zy = win|Ys = C)w;(s;)P(Yz2 = C|Y] = s;)

s;€C,D

132143)

by(C) =D

wa(D) = max P(zy = win|Ys = D)w;y(s;)P(Y2 =D|Y; = s;)

s;€CD

:max<l.i.§1.i.1)
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w3(C) = max P(z3 = league|Y; = C)ws(s;)P(Y; = C|Y2 = ;)

s;€CD

w3(D) = max P(z3 = league|Y; = D)ws(s;)P(Y; =D|Ys = s;)

s;€CD

<1 1 31 1 1>
—_—max|—+— -+ —, — ¢ — « —

Now, to figure out the order, we set §; = byy1(Jir1)

Yr+1 = END

y3s =C

o = b3(C)
=C

71 = by(C)
=D

Yo = b1(D)
= START

So, the most likely sequence is START-D-C-C-END
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2 Working in Log-space

2.1 Motivation

Given the following series of probability values:

P(%lzl) P($2:1|IE1:1) P($3:1|$2:1,I1:1)
0.002 0.004 0.003

We want to find P(x; = 1,29 = 1,23 = 1). Suppose we have a calculator which only has 4
decimal places of precision, so it can only store values of format X.XXXX

1. What is the correct value of P(x; = 1,29 = 1,23 = 1) without any precision limits?

P(l'lzl,x2:1,$3:1)zp(’l/5:1|"I/2:1//L'1:1>*P(’I,2:1|11:1)*P(’I/1:1)
= 0.003 * 0.004 x 0.002 = 0.000000024

2. What is the value of P(z; = 1,29 = 1,23 = 1) using our faulty calculator?

Plxzy=1,29=1)= P(zo=1] 21 =1)P(x; = 1) = 0.004 % 0.002 = 0.0000
— Truncated!

P(zy =1,29 = 1,23 = 1) = 0.0000 * 0.003 = 0.0000
— Truncated again!
3. How do the values of P(z; = 1,29 = 1,23 = 1) from part (1) and (2) compare?
No precision limits: P(z; = 1,29 = 1,23 = 1) = 0.000000024
Faulty calculator: P(z; = 1,29 = 1,23 = 1) = 0.0000
4. What is the value of P(z; = 1,29 = 1,23 = 1) if we perform the same computation
but in log space?
log (P(:z:l =lxy=1123= 1)) =
log (P(z1 = 1,20 = 1,25 = 1))
=log(zy =1) +log(P(xeg =121 =1))+log(P(zs=1]xe =121 = 1)
— 1og(0.002) + log(0.004) + log(0.003)
= —6.2146 — 5.8091 — 5.5215
= —17.5452

elog (P(:m :1,:172:1,:173:1)) _

If we were to recover our value of P(zy = 1,20 = 1,23 =1) =
e~ 175452 = (.000000024

This is good! But we can use the log sum exp trick to extend its use to even smaller
scales.
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2.2 Forward and Backward Algorithm in Log Space
In the forward algorithm, recall that the a’s can be computed using the recursive procedure:
o a1(j) = mAja,
o Fort>1, u(j) = Ajy, Zizl a—1(k)By;
1. Derive log (a1 (j)) in terms of log(m;) and log(Ajs,)
log (a1(j)) = log (mjAjz, ) = log(m;) + log(Ajs,)
2. Derive log (at(j)) in terms of log (at,l(kz)) and log Ay;
log (Oét (]))
= log (Ajz, Yoiey -1 (k) Biy)
= og(Aja,) +1og (34, a1 (k) Biy)

- 108‘(!‘%’%) + log < 22{:1 elo8 (Ozzl(k)Bkj)>

= log(A,,,) + log ( Z}c]:l plos (mﬂ(k))ﬂog (B,‘,j)>

In the backward algorithm, we also have a similar recursive procedure:

o fr(j) =1

o For 1 <t <T—1, B(j) = Yy Akarr B (F) B

1. Derive log (ﬁT (U ))
log (82(7)) = log(1) = 0

2. Derive log (ﬁt(j)) in terms of log(Ags,., ), log (Bt+1(k:)), and log(Bjx)
log (8r(3))
=log (37, Akeerr By (k) By

= 10g (ijl elog (A"‘I/,+1e3t+1 (k)B]k)>

= 10g <Zi:1 elog(Akazt+1)+log (ﬁl+1(k))+10g(3_7k)>



10-601: Recitation 8 Page 11 of 11

11/3/2021

3 Bayesian Networks

Figure 2: Graphical Model

3.1 Practice problems

1. Write down the factorization of the above directed graphical model.

P(Xh X27 X37 X47 X5)
= P(X1)P(X2)P(X;5| X1, Xo) P(X4|X3)P(X5|X3)
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