
HOMEWORK 7
HIDDEN MARKOV MODELS AND BAYES NETS *

10-301 / 10-601 INTRODUCTION TO MACHINE LEARNING (FALL 2021)
http://mlcourse.org

OUT: Nov. 3, 2021
DUE: Nov. 12, 2021

TAs: Weyxin, Kevin, Joseph, Mukund, Brendon

Summary In this assignment you will implement a new named entity recognition system using Hidden
Markov Models. You will begin by going through some multiple choice and short answer warm-up problems
to build your intuition for these models and then use that intuition to build your own HMM models.

START HERE: Instructions
• Collaboration Policy: Please read the collaboration policy here: http://www.cs.cmu.edu/
˜mgormley/courses/10601/syllabus.html

• Late Submission Policy: See the late submission policy here: http://www.cs.cmu.edu/

˜mgormley/courses/10601/syllabus.html

• Submitting your work: You will use Gradescope to submit answers to all questions and code. Please
follow instructions at the end of this PDF to correctly submit all your code to Gradescope.

– Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, please use the provided template. Submissions can be handwritten onto the template, but
should be labeled and clearly legible. If your writing is not legible, you will not be awarded
marks. If your scanned submission misaligns the template, there will be a 5% penalty. Alterna-
tively, submissions can be written in LaTeX. Each derivation/proof should be completed in the
boxes provided. If you do not follow the template, your assignment may not be graded correctly
by our AI assisted grader.

– Programming: You will submit your code for programming questions on the homework to
Gradescope (https://gradescope.com). After uploading your code, our grading scripts
will autograde your assignment by running your program on a virtual machine (VM). When you
are developing, check that the version number of the programming language environment (e.g.
Python 3.9.6, OpenJDK 11.0.11, g++ 7.5.0) and versions of permitted libraries (e.g. numpy
1.21.2 and scipy 1.7.1) match those used on Gradescope. You have 10 free Gradescope pro-
gramming submissions. After 10 submissions, you will begin to lose points from your total
programming score. We recommend debugging your implementation on your local machine (or

*Compiled on Wednesday 3rd November, 2021 at 12:30

1

http://mlcourse.org
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
https://gradescope.com

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

the Linux servers) and making sure your code is running correctly first before submitting your
code to Gradescope.

• Materials: The data that you will need in order to complete this assignment is posted along with the
writeup and template on the course website.

Linear Algebra Libraries When implementing machine learning algorithms, it is often convenient to
have a linear algebra library at your disposal. In this assignment, Java users may use EJMLa or ND4Jb and
C++ users may use Eigenc. Details below. (As usual, Python users have NumPy.)
EJML for Java EJML is a pure Java linear algebra package with three interfaces. We strongly

recommend using the SimpleMatrix interface. The autograder will use EJML version 0.41.
When compiling and running your code, we will add the additional command line argu-
ment -cp "linalg_lib/ejml-v0.41-libs/*:linalg_lib/nd4j-v1.0.0-M1.1-libs/*:./" to en-
sure that all the EJML jars are on the classpath as well as your code.

ND4J for Java ND4J is a library for multidimensional tensors with an interface akin to
Python’s NumPy. The autograder will use ND4J version 1.0.0-M1.1. When com-
piling and running your code, we will add the additional command line argument
-cp "linalg_lib/ejml-v0.41-libs/*:linalg_lib/nd4j-v1.0.0-M1.1-libs/*:./" to en-
sure that all the ND4J jars are on the classpath as well as your code.

Eigen for C++ Eigen is a header-only library, so there is no linking to worry about—just #include what-
ever components you need. The autograder will use Eigen version 3.4.0. The command line argu-
ments above demonstrate how we will call you code. When compiling your code we will include, the
argument -I./linalg_lib in order to include the linalg_lib/Eigen subdirectory, which
contains all the headers.

We have included the correct versions of EJML/ND4J/Eigen in the linalg_lib.zip posted on the
Coursework page of the course website for your convenience. It contains the same linalg_lib/ directory
that we will include in the current working directory when running your tests. Do not include EJML, ND4J,
or Eigen in your homework submission; the autograder will ensure that they are in place.

ahttps://ejml.org
bhttps://javadoc.io/doc/org.nd4j/nd4j-api/latest/index.html
chttp://eigen.tuxfamily.org/

2 of 26

https://ejml.org
https://javadoc.io/doc/org.nd4j/nd4j-api/latest/index.html
http://eigen.tuxfamily.org/

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

Instructions for Specific Problem Types
For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

 Matt Gormley / Henry Chai

#Marie Curie

Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in the new answer:

Select One: Who taught this course?

 Matt Gormley / Henry Chai

#Marie Curie
��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are scientists?

2 Stephen Hawking

■ Albert Einstein

2 Isaac Newton

2 None of the above

Again, if you need to change your answer, you may cross out the previous answer(s) and bubble in the new
answer(s):

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton
��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully included in the
given space. You may cross out answers or parts of answers, but the final answer must still be within the
given space.

Fill in the blank: What is the course number?

10-601 10-��SS7601

3 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

1 Written Questions (50 points)
1.1 Hidden Markov Models

1. (4 points) In this section, we will test your understanding of several aspects of HMMs. Shade in the
box or circle in the template document corresponding to the correct answer(s) for each of the questions
below.

(a) (2 points) (Select all that apply) Let Yt be the state at time t. Which of the following are true
under the (first-order) Markov assumption in an HMM:

2 The states are independent

2 The observations are independent

2 Yt ⊥⊥ Yt−1 | Yt−2

2 Yt ⊥⊥ Yt−2 | Yt−1

2 None of the above

(b) (2 points) (Select all that apply) Which of the following independence assumptions hold in an
HMM:

2 The current observation Xt is conditionally independent of all other observations given
the current state Yt

2 The current observation Xt is conditionally independent of all other states given the
current state Yt

2 The current state Yt is conditionally independent of all states given the previous state

2 The current observation Xt is conditionally independent of Yt−2 given the previous
observation Xt−1

2 None of the above

4 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

2. (8 points) In the remaining questions, you will always see two quantities and decide what is the strongest
relation between them. There is only one correct answer. Use the following definitions: αt(sj) =
P (Yt = sj , x1:t) and βt(sj) = P (xt+1:T | Yt = sj).

Note: ? means it’s not possible to assign any true relation.

(a) (3 points) (Select one) Let N denote the number of possible hidden states. In other words, each
Yt ∈ {si}Ni=1. What is the relation between

∑N
i=1(α5(si)β5(si)) and P (x1:T)? Select only the

strongest relation that necessarily holds.

=

>

<

≤

≥

?

(b) (3 points) (Select one) What is the relation between P (Y4 = s1, Y5 = s2, x1:T) and α4(s1)β5(s2)?
Select only the strongest relation that necessarily holds.

=

>

<

≤

≥

?

(c) (2 points) (Select one) What is the relation between α5(si) and β5(si)? Select only the strongest
relation that necessarily holds.

=

>

<

≤

≥

?

5 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

1.2 Graphical Models
In the Kingdom of Westeros, Summer has come. Jon Snow, the King in the North, has taken the responsi-
bility to defeat the Giants and protect the realm.

If Jon Snow can get Queen Cersei and Daenerys Queen of the Dragons to help him Jon is likely to beat the
giants. Cersei and Daenerys are powerful women who are skeptical of the existence of Giants and will most
likely only consider joining Jon if the are shown evidence of an imminent Giant attack. They can only be
shown of an attack if Jon captures a live Giant.

The Bayes net that represents the relationship between the events described above is shown below. Use the
following notation for your variables: Jon Snow captures a live Giant (X1), Jon shows Censei and Daenerys
a live Giant (X2), Cersei agrees to help (X3), Daenerys agrees to help (X4) and Giants defeated (X5).

1. (1 point) Write down the factorization of the above directed graphical model.

2. (1 point) Each random variable represented in the above Bayesian network is binary valued (i.e. either
the event happens or it does not). If we use the same conditional independence assumptions made in
part (1), state the minimum number of parameters you need to fully specify this Bayesian network.

3. (1 point) If we didn’t use the conditional independence assumptions made in part (1), what would be
the minimum number of parameters we would need to model any joint distribution over the same set of
random variables?

6 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

4. (5 points) For the following questions fill in the blank with the smallest set S of random variables
needed to be conditioned on in order for the independence assumption to hold. For example Xi ⊥
Xj | S . What is the smallest set S that makes this statement true? The empty set ∅ is a valid answer,
additionally if the independence assumption cannot be satisfied no matter what we condition on then
your answer should be ’Not possible’.

(a) (1 point) X1 ⊥ X3 |

(b) (1 point) X1 ⊥ X5 |

(c) (1 point) X2 ⊥ X4 |

(d) (1 point) X3 ⊥ X4 |

(e) (1 point) X2 ⊥ X5 |

5. (6 points) Jon gets his friend Sam to calculate some estimates of his chances. Sam returns to Jon with
the following conditional probabilities tables:

X1 = 0 0.3

X1 = 1 0.7

X1 = 0 X1 = 1

X2 = 0 0.8 0.25

X2 = 1 0.2 0.75

X2 = 0 X2 = 1

X3 = 0 0.5 0.6

X3 = 1 0.5 0.4

X2 = 0 X2 = 1

X4 = 0 0.3 0.2

X4 = 1 0.7 0.8

X3 = 0, X4 = 0 X3 = 0, X4 = 1 X3 = 1, X4 = 0 X4 = 1, X3 = 1

X5 = 0 0.4 0.7 0.8 0.5

X5 = 1 0.6 0.3 0.2 0.5

Table 1: Sam’s Conditional Probability tables

7 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

Using the conditional probabilities in Table 1 for our graphical model, compute the following (Your
answers should be given to 2 decimal places):

(a) (2 points) P (X1 = 0, X2 = 1, X3 = 0, X4 = 1, X5 = 0).

Answer Work

(b) (4 points) P (X1 = 1|X3 = 1)

Answer Work

8 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

1.3 Viterbi Decoding
1. (4 points) Suppose we have a set of sequences consisting of T observed states, x1, . . . , xT , where each

xt ∈ {1, 2, 3}. Each observed state is associated with a hidden state Yt ∈ {C,D}. Let s1 = C and
s2 = D.

In the Viterbi algorithm, we seek to find the most probable hidden state sequence ŷ1, . . . , ŷT given the
observations x1, . . . , xT .

We define:

• B is the transition matrix: Bjk = P (Yt = sk | Yt−1 = sj)

• A is the emission matrix: Ajk = P (Xt = k | Yt = sj)

• π describes Y1’s initialization probabilities: πj = P (Y1 = sj)

• ωt(sk) is the maximum product of all the probabilities taken through path Y1, . . . , Yt−1 that ends
with Yt at state sk.

ωt(sk) = max
y1,...,yt−1

P (x1:t, y1:t−1, Yt = sk) (1)

• bt(sk) are the backpointers that store the path through hidden states that give us the highest prod-
uct.

bt(sk) = argmax
y1,...,yt−1

P (x1:t, y1:t−1, Yt = sk) (2)

We outline the Viterbi Algorithm below:

1. Initialize ω1(sj) = πjAjx1 and b1(j) = j

2. For t > 1, we have

ωt(sj) = max
k∈{1,...,J}

AjxtBkjωt−1(sk)

bt(sj) = argmax
k∈{1,...,J}

AjxtBkjωt−1(sk)

We can obtain the most probable sequence by backtracing through the backpointers as follows:

1. ŷT = argmaxk∈{1,...,J} ωT (sk).

2. For t = T − 1, . . . , 1:
ŷt = bt+1(ŷt+1)

3. Return ŷ1, . . . , ŷT

9 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

For the following question, consider the Hidden Markov Model specified below. Working with prob-
abilities in the logarithm scale, we have that lnP (Y1 = C) = lnP (Y1 = D) = −0.69, and the state
transition model and emission probability tables are given as follows.

C D−0.51

−1.74

−0.74

−1.32

k lnP (Xt = k | Yt = C) lnP (Xt = k | Yt = D)

1 -0.69 -1.21
2 -0.91 -0.69
3 -2.30 -1.61

We observed X1 = 1 and X2 = 2. (Note that taking the maximum of log probabilities will give you
the same result as taking the maximum of probabilities as log is a monotonically increasing function.)

(a) (2 points) Compute lnω1(C) and lnω1(D). If your answers involves decimal numbers, please
round your answer to TWO decimal places.

Note: Showing your work in these questions is optional, but it is recommended to help us under-
stand where any misconceptions may occur. Only your answer in the left box will be graded.

What is lnω1(C)?

lnω1(C) Work

What is lnω1(D)?

lnω1(D) Work

10 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

(b) (2 points) (Select one) Which of the following is the most likely sequence of hidden states?

Y1 = C, Y2 = C

Y1 = D, Y2 = D

Y1 = D, Y2 = C

Y1 = C, Y2 = D

Not enough information.

11 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

1.4 Forward-Backward Algorithm
1. (14 points) To help you prepare to implement the HMM forward-backward algorithm (see Section 2.5

for a detailed explanation), we have provided a small example for you to work through by hand. This
toy data set consists of a training set of three sequences with three unique words and two tags and a
validation set with a single sequence composed of the same unique words used in the training set.

Training set:

you D
eat C
fish D

you D
fish D
eat C

eat C
fish D

Where the training word sequences are:

x(1) = [you eat fish]T

x(2) = [you fish eat]T

x(3) = [eat fish]T

And the corresponding tags are:

y(1) = [D C D]T

y(2) = [D D C]T

y(3) = [C D]T

Validation set:

fish
eat
you

Where the validation word sequences are:

xvalidation =
[
fish eat you

]T

12 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

In this question, we define

• Each observed state xt ∈ {1, 2, 3}, where 1 corresponds to you, 2 corresponds to eat, and 3
corresponds to fish

• Each hidden state Yt ∈ {C,D}. Let s1 = C and s2 = D.

• B is the transition matrix, where Bjk = P (Yt = sk | Yt−1 = sj). Note, here B is a 2× 2 matrix.

• A is the emission matrix, where Ajk = P (Xt = k | Yt = sj). Note, here A is a 2× 3 matrix. As
an example, B23 denotes P (Xt = 3 | Yt = s2), or the probability Xt corresponds to fish given
the hidden state Yt = D

• π describes Y1’s initialization probabilities: πj = P (Y1 = sj)

• αt(j) = P (Yt = sj , x1:t), which can be computed recursively:

1. α1(j) = πjAjx1 .

2. For t > 1, αt(j) = Ajxt

∑J
k=1 αt−1(k)Bkj

• βt(j) = P (xt+1:T | Yt = sj), which can be computed recursively:

1. βT (j) = 1

2. For 1 ≤ t ≤ T − 1, βt(j) =
∑J

k=1Akxt+1βt+1(k)Bjk

The following four questions are meant to encourage you to work through the forward backward algo-
rithm by hand using this validation example. Feel free to use a calculator, being careful to carry enough
significant figures through your computations to avoid rounding errors. For each question below, please
report the requested value in the text box under the question (these boxes are only visible in the template
document).

Note: pseudocounts used in section 2.4 should also be used here.

Note: Showing your work in these questions is optional, but it is recommended to help us understand
where any misconceptions may occur. Only your answer in the left box will be graded.

13 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

(a) (5 points) Compute α2(C), the α value associated with the tag “C” for the second word in the
validation sequence. Please round your answer to TWO decimal places.

α2(C) Work

(b) (3 points) Compute β2(D), the β value associated with the tag “D” for the second word in the
validation sequence. Please round your answer to TWO decimal places.

β2(D) Work

14 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

(c) (3 points) Predict the tag for the third word in the validation sequence.

Tag Work

(d) (3 points) Compute the log-likelihood for the entire validation sequence, “fish eat you”.
Please round your answer to TWO decimal places.

Log-
Likelihood

Work

15 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

2. (6 points) Return to these questions after implementing your learnhmm.{py|java|cpp} and
forwardbackward.{py|java|cpp} functions. Please ensure that you have used the log-sum-exp
trick in your programming as described in section 3.3 before answering these empirical questions.

Using the full data set train.txt in the handout, use your implementation of
learnhmm.{py|java|cpp} to learn parameters for an hmm model using the first 10, 100, 1000,
and 10000 sequences in the file. Use these learned parameters to perform prediction on the English
train.txt and the validation.txt files using your forwardbackward.{py|java|cpp}. Construct
a plot with number of sequences used for training on the x-axis (log-scale with base e) and average
log likelihood across all sequences from the English train.txt and the validation.txt on the y-axis (see
Section 2.5 for details on computing the log data likelihood for a sequence). Each table entry is worth
0.5 points. Write the resulting log likelihood values rounded to two decimal places in the table in the
template. Include your plot in the large box in the template (2 points). To receive credit for your plot,
you must submit a computer generated plot. DO NOT hand draw your plot.

(a) (4 points) Fill in this table.

Sequences
Train Average Log-
Likelihood

Validation Average
Log-Likelihood

10 ?? ??
100 ?? ??
1000 ?? ??
10000 ?? ??

(b) (2 points) Put your plot below:

Plot

16 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

2 Programming (80 points)
2.1 The Task
In the programming section you will implement a named entity recognition system using Hidden Markov
Models (HMMs). Named entity recognition (NER) is the task of classifying named entities, typically proper
nouns, into pre-defined categories, such as person, location, organization. Consider the example sequence
below, where each word is appended with a tab and then its tag:

“ O
Rhinestone B-ORG
Cowboy I-ORG
” O
(O
Larry B-PER
Weiss I-PER
) O
- O
3:15 O

Rhinestone and Cowboy are labeled as an organization (ORG), while Larry and Weiss is labeled as a
person (PER). Words that aren’t named entities are assigned the O tag. The B- prefix indicates that a word
is the beginning of an entity, while the I- prefix indicates that the word is inside the entity.

NER is an incredibly important task for a machine to begin to analyze and interpret a body of natural
language text. For example, when designing a system that automatically summarizes news articles, it is
important to recognize the key subjects in the articles. Another example is designing a trivia bot. If you
can quickly extract the named entities from the trivia question, you may be able to more easily query your
knowledge base (e.g. type a query into Google) to request information about the answer to the question.

2.2 The Dataset
WikiANN is a “silver standard” dataset that was generated without human labelling. The English Abstract
Meaning Representation (AMR) corpus and DBpedia features were used to train an automatic classifier
to label Wikipedia articles. These labels were then propagated throughout other Wikipedia articles using
the Wikipedia’s cross-language links and redirect links. Afterwards, another tagger that self-trains on the
existing tagged entities was used to label all other mentions of the same entities, even those with different
morphologies (prefixes and suffixes that modify a word in other languages). Finally, the amassed training
examples were filtered by “commonness” and “topical relatedness” to pick more relevant training data.

The WikiANN dataset provides labelled entity data for Wikipedia articles in 282 languages. We will be
primarily using the English subset, which contains 14,000 training examples and 3,300 test examples, and
the French subset, which contains around 7,500 training examples and 300 test examples. On a technical
level, the main task is to implement an algorithm to learn the HMM parameters given the training data and
then implement the forward backward algorithm to perform a smoothing query which we can then use to
predict the hidden tags for a sequence of words.

17 of 26

https://aclanthology.org/P17-1178.pdf

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

2.3 File Formats
The handout files for this assignments contains several files that you will use in the homework. The contents
and formatting of each of these files is explained below.

1. train.txt This file contains labeled text data that you will use in training your model in the Learning
problem. Specifically the text contains one word per line that has already been preprocessed, cleaned
and tokenized. Every sequence has the following format:

<Word0>\t<Tag0>\n<Word1>\t<Tag1>\n ... <WordN>\t<TagN>\n

where every <WordK>\t<TagK> unit token is separated by a newline. Between each sequence is
an empty line. If we have two three-word sequences in our data set, the data will look like so:

<Word0>\t<Tag0>\n
<Word1>\t<Tag1>\n
<Word2>\t<Tag2>\n
\n
<Word0>\t<Tag0>\n
<Word1>\t<Tag1>\n
<Word2>\t<Tag2>

Note: Word 2 of the second sequence does not end with a newline because it is the end of the data set.

2. validation.txt: This file contains labeled data that you will use to evaluate your model in the Experi-
ments section. This file has the same format as train.txt.

3. index to word.txt and index to tag.txt: These files contain a list of all words or tags that appear in
the data set. The format is simple:

index to word.txt index to tag.txt
<Word0>\n <Tag0>\n
<Word1>\n <Tag1>\n
<Word2>\n <Tag2>\n
...

...

In your functions, you will convert the string representation of words or tags to indices correspond-
ing to the location of the word or tag in these files. For example, if Austria is on line 729 of in-
dex to word.txt, then all appearances of Austria in the data sets should be converted to the index
729. This index will also correspond to locations in the parameter matrices. For example, the word
Austria corresponds to the parameters in column 729 of the matrix stored in hmmemit.txt. This will
be useful for your forward-backward algorithm implementation (see Section 2.5).

4. predicted.txt: This file contains labeled data that you will use to debug your implementation. The
labels in this file are generated by running our decoder using the features from train.txt. This file has
the same format as train.txt.

5. metrics.txt: This file contains the metrics you will compute for the validation data. The first line
should contain the average log likelihood, and the second line should contain the prediction accuracy.
There should be a single space after the colon preceding the metric value; see the reference output file
for more detail.

18 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

6. hmmtrans.txt, hmmemit.txt and hmminit.txt: These files contain pre-trained model parameters
of an HMM that you will use in testing your implementation of the Learning and Evaluation and
Decoding problems. The format of the first two files are analogous and is as follows. Every line in
these files consists of a conditional probability distribution. In the case of transition probabilities, this
distribution corresponds to the probability of transitioning into another state, given a current state.
Similarly, in the case of emission probabilities, this distribution corresponds to the probability of
emitting a particular symbol, given a current state. The formats of these files are:

hmmtrans.txt:
<ProbS1S1> <ProbS1S2> ... <ProbS1SN>\n
<ProbS2S1> <ProbS2S2> ... <ProbS2SN>\n...

hmmemit.txt:
<ProbS1Word1> <ProbS1Word2> ... <ProbS1WordN>\n
<ProbS2Word1> <ProbS2Word2> ... <ProbS2WordN>\n...

In both cases above, elements in the same row are separated by white space. Each row corresponds to
a line of text, using \n to create new lines.

hmminit.txt:
<ProbS1>\n
<ProbS2>\n...

The format of hmminit.txt is similarly defined except that it only contains a single probability distri-
bution over starting states. Therefore each row only has a single element.

Note that the data provided to you is to help in developing your implementation of the HMM algorithms.
Your code will be tested on Gradescope using different subsets of data with identical formatting.

2.4 Learning
Your first task is to implement an algorithm to learn the hidden Markov model parameters needed to apply
the forward backward algorithm (See Section 2.5). There are three sets of parameters that you will need to
estimate: the initialization probabilities π, the transition probabilities B, and the emission probabilities A.
For this assignment, we model each of these probabilities using a multinomial distribution with parameters
πj = P (Y1 = sj), Bjk = P (Yt = sk | Yt−1 = sj), and Ajk = P (Xt = k | Yt = sj). These can be
estimated using maximum likelihood, which results in the following parameter estimators:

1. P (Y1 = sj) = πj =
NY1=sj

+1∑J
p=1(NY1=sp+1)

, where NY1=sj equals the number of times state sj is associated

with the first word of a sentence in the training data set.

2. P (Yt = sk | Yt−1 = sj) = Bjk =
NYt=sk,Yt−1=sj

+1∑J
p=1(NYt=sp,Yt−1=sj

+1)
, where NYt=sk,Yt−1=sj is the number of

times state sj is followed by state sk in the training data set.

3. P (Xt = k | Yt = sj) = Ajk =
NXt=k,Yt=sj

+1∑M
p=1(NXt=p,Yt=sj

+1)
, where NXt=k,Yt=sj is the number of times that

the state sj is associated with the word k in the training data set.

Note that for each count, a “+1” is added to make a pseudocount. This is slightly different from pure
maximum likelihood estimation, but it is useful in improving performance when evaluating unseen cases
during evaluation of your validation set.

19 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

You should implement a function that reads in the training data set (train.txt), and then estimates π, A, and
B using the above maximum likelihood solutions.

Your outputs should be in the same format as hmminit.txt, hmmtrans.txt, and hmmemit.txt (including the
same number of decimal places to ensure there are no rounding errors during prediction). The autograder
will use the following commands to call your function:

For Python: $ python3 learnhmm.py [args...]
For Java: $ javac -cp "./lib/ejml-v0.33-libs/*:./" learnhmm.java;

java -cp "./lib/ejml-v0.33-libs/*:./" learnhmm [args...]
For C++: $ g++ -g -std=c++11 -I./lib learnhmm.cpp; ./a.out [args...]

Where [args...] is a placeholder for six command-line arguments:<train input> <index to word>
<index to tag> <hmminit> <hmmemit> <hmmtrans>. These arguments are described below:

1. <train input>: path to the training input .txt file (see Section 2.2)

2. <index to word>: path to the .txt that specifies the dictionary mapping from words to indices.
The tags are ordered by index, with the first word having index of 0, the second word having index of
1, etc.

3. <index to tag>: path to the .txt that specifies the dictionary mapping from tags to indices. The
tags are ordered by index, with the first tag having index of 0, the second tag having index of 1, etc.

4. <hmminit>: path to output .txt file to which the estimated initialization probabilities (π) will be
written. The file output to this path should be in the same format as the handout hmminit.txt (see
Section 2.2).

5. <hmmemit>: path to output .txt file to which the emission probabilities (A) will be written. The
file output to this path should be in the same format as the handout hmmemit.txt (see Section 2.2)

6. <hmmtrans>: path to output .txt file to which the transition probabilities (B) will be written. The
file output to this path should be in the same format as the handout hmmtrans.txt (see Section 2.2).

20 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

2.5 Evaluation and Decoding
2.5.1 Forward Backward Algorithm and Minimal Bayes Risk Decoding

Your next task is to implement the forward-backward algorithm. Suppose we have a set of sequence consist-
ing of T words, x1, . . . , xT . Each word is associated with a label Yt ∈ {1, . . . , J}. In the forward-backward
algorithm we seek to approximate P (Yt | x1:T) up to a multiplication constant. This is done by first breaking
P (Yt | x1:T) into a “forward” component and a “backward” component as follows:

P (Yt = sj | x1:T) ∝ P (Yt = sj , xt+1:T | x1:t)
∝ P (Yt = sj | x1:t)P (xt+1:T | Yt = sj , x1:t)

∝ P (Yt = sj | x1:t)P (xt+1:T | Yt = sj)

∝ P (Yt = sj , x1:t)P (xt+1:T | Yt = sj)

where P (Yt = sj | x1, . . . , xt) is computed by passing forward recursively through the model and
P (xt+1, . . . , xT | Yt = sj) is computed by passing recursively backwards through the model.

Forward Algorithm

Define αt(j) = P (Yt = sj , x1:t). We can rearrange our definition of αt(j) as follows:

αt(j) =P (Yt = sj , x1:t)

=
∑
k

P (Yt = sj , Yt−1 = sk, x1:t)

=
∑
k

P (Yt−1 = sk, x1:t | Yt = sj)P (Yt = sj)

=
∑
k

P (xt | Yt = sj)P (Yt−1 = sk, x1:t−1 | Yt = sj)P (Yt = sj)

=P (xt | Yt = sj)
∑
k

P (Yt = sj , Yt−1 = sk, x1:t−1)

=P (xt | Yt = sj)
∑
k

P (Yt = sj , x1:t−1 | Yt−1 = sk)P (Yt−1 = sk)

=P (xt | Yt = sj)
∑
k

P (Yt = sj | Yt−1 = sk)P (x1:t−1 | Yt−1 = sk)P (Yt−1 = sk)

=P (xt | Yt = sj)
∑
k

P (Yt = sj | Yt−1 = sk)P (Yt−1 = sk, x1:t−1)

=Ajxt

∑
k

Bkjαt−1(k) (3)

Using this definition, the α’s can be computed using the following recursive procedure:

1. α1(j) = πjAjx1 .

2. For t > 1, αt(j) = Ajxt

∑J
k=1 αt−1(k)Bkj

21 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

Backward Algorithm Define βt(j) = P (xt+1:T | Yt = sj). We can rearrange our definition of βt(j) as
follows:

βt(j) = P (xt+1:T | Yt = sj)

=

J∑
k=1

P (Yt+1 = sk, xt+1:T | Yt = sj)

=
J∑

k=1

P (xt+1:T | Yt = sj , Yt+1 = sk)P (Yt+1 = sk | Yt = sj)

=

J∑
k=1

P (xt+1 | Yt+1 = sk)P (xt+2:T | Yt+1 = sk)P (Yt+1 = sk | Yt = sj)

=
J∑

k=1

Akxt+1βt+1(k)Bjk (4)

Just like the α’s, the β’s can also be computed using the following backward recursive procedure:

1. βT (j) = 1 (All states could be ending states)

2. For 1 ≤ t ≤ T − 1, βt(j) =
∑J

k=1Akxt+1βt+1(k)Bjk (Generate xt+1 from any state)

Forward-Backward Algorithm As stated above, the goal of the Forward-Backward algorithm is to com-
pute P (Yt = sj | x1:T). This can be done using the following equation:

P (Yt = sj | x1:T) ∝ P (Yt = sj , x1:t)P (xt+1:T | Yt = sj)

After running your forward and backward passes through the sequence, you are now ready to estimate the
conditional probabilities as:

P (Yt | x1:t) ∝ αt ◦ βt
where ◦ is the element-wise product.

Minimum Bayes Risk Prediction We will assign tags using the minimum Bayes risk predictor, defined for
this problem as follows:

Ŷt = argmax
j∈{1,...,J}

P (Yt = sj | x1:T)

To resolve ties, select the tag that appears earlier in the <index to tag> input file.

22 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

Computing the Log Likelihood of a Sequence When we compute the log likelihood of a sequence, we
are interested in the computing the quantity log(P (x1:T)). We can rewrite this in terms of values we have
already computed in the forward-backward algorithm as follows:

logP (x1:T) = log
(∑

j

P (x1:T , Yt = sj)
)

= log
(∑

j

αT (j)
)

2.5.2 Implementation Details

You should now implement your forward-backward algorithm as a program,
forwardbackward.{py|java|cpp}. The program will read in validation data and the parameter files
produced by learnhmm.{py|java|cpp}. The autograder will use the following commands to call your
function:

For Python: $ python3 forwardbackward.py [args...]
For Java: $ javac -cp "./lib/ejml-v0.33-libs/*:./" forwardbackward.java;

$ java -cp "./lib/ejml-v0.33-libs/*:./" forwardbackward [args...]
For C++: $ g++ -g -std=c++11 -I./lib forwardbackward.cpp; ./a.out [args...]

Where above [args...] is a placeholder for seven command-line arguments:<validation input>
<index to word> <index to tag> <hmminit> <hmmemit> <hmmtrans> <predicted file>
<metric file>. These arguments are described in detail below:

1. <validation input>: path to the validation input .txt file that will be evaluated by your for-
ward backward algorithm (see Section 2.2)

2. <index to word>: path to the .txt that specifies the dictionary mapping from words to indices.
The tags are ordered by index, with the first word having index of 0, the second word having index of
1, etc. This is the same file as was described for learnhmm.{py|java|cpp}.

3. <index to tag>: path to the .txt that specifies the dictionary mapping from tags to indices. The
tags are ordered by index, with the first tag having index of 0, the second tag having index of 1, etc.
This is the same file as was described for learnhmm.{py|java|cpp}.

4. <hmminit>: path to input .txt file which contains the estimated initialization probabilities (π).

5. <hmmemit>: path to input .txt file which contains the emission probabilities (A).

6. <hmmtrans>: path to input .txt file which contains transition probabilities (B).

7. <predicted file>: path to the output .txt file to which the predicted tags will be written. The
file should be in the same format as the <validation input> file.

8. <metric file>: path to the output .txt file to which the metrics will be written.

23 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

Example command for python users:

$ python3 forwardbackward.py toy_data/validation.txt \
toy_data/index_to_word.txt toy_data/index_to_tag.txt \
toy_data/hmminit.txt toy_data/toy_hmmemit.txt \
toy_data/hmmtrans.txt toy_data/predicted.txt \
toy_data/metrics.txt

After running the command above, the <predicted file> output should be:

fish D
eat C
you D

And the <metric file> output should be:

Average Log-Likelihood: -3.0438629330222424
Accuracy: 0.3333333333333333

where average log-likelihood and accuracy are evaluated over the validation set.

Take care that your output has the exact same format as shown above. There should be a single space
after the colon preceding the metric value (e.g. a space after Average Log-Likelihood:). Each line
should be terminated by a Unix line ending \n.

24 of 26

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

2.5.3 Log-Space Arithmetic for Avoiding Underflow

Handling underflow properly is a critical step in implementing an HMM. The most generalized way of
handling numerical underflow due to products of small positive numbers (like probabilities) is to calculate
everything in log-space, i.e., represent every quantity by their logarithm.

For this homework, using log-space starts with transforming Eq.(3) and Eq.(4) into logarithmic form (how to
do that is straightforward and left as an exercise). Please use e as the base for logarithm calculation (natural
log).

After transforming the equations into log form, you may discover calculation of the following type:

log
∑
i

exp (vi)

This may be programmed as is, but exp (vi) may cause underflow when vi is large and negative. One way
to avoid this is to use the log-sum-exp trick. We provide the pseudo code for this trick in Algorithm 1:

Algorithm 1 Log-Sum-Exp Trick
1: procedure LOGSUMEXPTRICK((v1, v2, · · · , vn))
2: m = max(vi) for i = {1, 2, · · · , n}
3: return m+ log(

∑
i exp(vi −m))

Note: The autograder test cases account for numerical underflow using the Log-Sum-Exp Trick. If
you do not implement forwardbackward.py with the trick, you might only receive partial credit.

2.6 Gradescope Submission
You should submit your learnhmm.{py|java|cpp} and forwardbackward.{py|java|cpp} to
Gradescope. Note: please do not use other file names. This will cause problems for the autograder to
correctly detect and run your code.

Some additional tips: Make sure to read the autograder output carefully. The autograder for Gradescope
prints out some additional information about the tests that it ran. For this programming assignment we’ve
specially designed some buggy implementations that you might do, and try our best to detect those and
give you some more useful feedback in Gradescope’s autograder. Make wise use of autograder’s output for
debugging your code.

Note: For this assignment, you have 10 submissions to Gradescope before the deadline, but only your last
submission will be graded.

25 of 26

https://www.xarg.org/2016/06/the-log-sum-exp-trick-in-machine-learning/

Homework 7: Hidden Markov Models and Bayes Nets 10-301 / 10-601

3 Collaboration Questions
After you have completed all other components of this assignment, report your answers to these questions
regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details.

3. Did you find or come across code that implements any part of this assignment ? If so, include full
details.

Your Answer

26 of 26

http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html

	Written Questions (50 points)
	Hidden Markov Models
	Graphical Models
	Viterbi Decoding
	Forward-Backward Algorithm

	Programming (80 points)
	The Task
	The Dataset
	File Formats
	Learning
	Evaluation and Decoding
	Forward Backward Algorithm and Minimal Bayes Risk Decoding
	Implementation Details
	Log-Space Arithmetic for Avoiding Underflow

	Gradescope Submission

	Collaboration Questions

