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Q&A
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Q: How can I get more one-on-one interaction with the 
course staff?

A:
Attend office hours as soon after the homework release 
as possible!



Q&A
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Q: “Why are there fewer OHs now?”

A:
Wrong question. I think what you meant was:

“I just noticed that you guys are modeling office hour demand 
and adaptively scaling the number of office hours and number 
of TAs present to maximize contact time when I really need it! 
How can I be more like your awesome TAs?”

Great question. Spend more time talking with them at OHs, 
whenever you want and we’ll adapt.

And yes, we are actually increasing the (amortized) amount of 
OHs per TA, but it’s hard to observe if you’re just looking at the 
calendar.



Reminders

• Post-Exam Followup:

– Exam Viewing
– Exit Poll: Exam 1
– Grade Summary 1

• Homework 4: Logistic Regression

– Out: Fri, Oct. 1 
– Due: Mon, Oct. 11 at 11:59pm

• Swapped lecture/recitation:

– Lecture 12: Fri, Oct. 8
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Q&A
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Q: Am I good enough?

A: Exam 1 cannot answer that question for 
you. It can only answer the following:

“How well did you perform on a timed 
standardized test taken on the 30th of 
September on the topics of decision trees, 
k-nearest neighbors, perceptron, and linear 
regression.”



Q&A
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Q: Can it answer any of these questions?

• “Will I someday become a machine learning 
scientist?”

• “Will I get that internship?”

• “How successful will I be in my future 
endeavors?”

• “Am I going to have impact on the world?”

• “How many licks does it take to get to the 
center of a Tootsie Pop™?”

A: No
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REGULARIZATION
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Example: Linear Regression

9x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

… … … … …

10 1.1 1.9 … (1.9)9



Polynomial Coefficients   

Slide courtesy of William Cohen



Example: Linear Regression

11x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

• With just N = 10 
points we overfit!

• But with N = 100 
points, the 
overfitting 
(mostly) 
disappears

• Takeaway: more 
data helps 
prevent 
overfitting

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian
noise

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

3 0.1 2.7 … (2.7)9

4 1.1 1.9 … (1.9)9

… … … … …

… … … … …

… … … … …

98 … … … …

99 … … … …

100 0.9 1.5 … (1.5)9



Overfitting
Definition: The problem of overfitting is when 

the model captures the noise in the training data 
instead of the underlying structure 

Overfitting can occur in all the models we’ve seen 

so far: 

– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)
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Motivation: Regularization

• Occam’s Razor: prefer the simplest 
hypothesis

• What does it mean for a hypothesis (or 
model) to be simple?
1. small number of features (model selection)
2. small number of “important” features 

(shrinkage)
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Regularization
• Given objective function: J(θ)
• Goal is to find:

• Key idea: Define regularizer r(θ) s.t. we tradeoff 
between fitting the data and keeping the model 
simple

• Choose form of r(θ):
– Example: q-norm (usually p-norm):
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Regularization
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Question:
Suppose we are minimizing J’(θ) where

As λ increases, the minimum of J’(θ) 
will…

A. …move towards the midpoint 
between J(θ) and r(θ)

B. …move towards the minimum of J(θ) 
C. …move towards the minimum of r(θ)
D. …move towards a theta vector of 

positive infinities
E. …move towards a theta vector of 

negative infinities
F. …stay the same
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Regularization

23

Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is 

usually denoted by $& -- that is, the parameter for which 
we fixed %& = 1

• Regularizers always avoid penalizing this bias / intercept 
parameter

• Why? Because otherwise the learning algorithms wouldn’t 
be invariant to a shift in the y-values

Whitening Data
• It’s common to whiten each feature by subtracting its 

mean and dividing by its variance

• For regularization, this helps all the features be penalized 
in the same units 
(e.g. convert both centimeters and kilometers to z-scores)



Regularization Exercise
In-class Exercise
1. Plot train error vs. regularization weight (cartoon)
2. Plot validation error vs . regularization weight (cartoon)

24
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Example: Logistic Regression
• For this example, we 

construct nonlinear features 
(i.e. feature engineering)

• Specifically, we add 
polynomials up to order 9 of 
the two original features x1
and x2

• Thus our classifier is linear in 
the high-dimensional 
feature space, but the 
decision boundary is 
nonlinear when visualized in 
low-dimensions (i.e. the 
original two dimensions)

28

Training 
Data

Test
Data



Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression

40



Example: Logistic Regression

41



Example: Logistic Regression
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Example: Logistic Regression

43
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Regularization as MAP

• L1 and L2 regularization can be interpreted 
as maximum a-posteriori (MAP) estimation 

of the parameters
• To be discussed later in the course…
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Takeaways

1. Nonlinear basis functions allow linear 

models (e.g. Linear Regression, Logistic 
Regression) to capture nonlinear aspects of 
the original input

2. Nonlinear features are require no changes 

to the model (i.e. just preprocessing)
3. Regularization helps to avoid overfitting

4. Regularization and MAP estimation are 
equivalent for appropriately chosen priors
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Feature Engineering / Regularization 
Objectives

You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and 

remove irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to 

combat overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly 

separable dataset in higher dimensions
• Describe feature engineering in common application 

areas
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NEURAL NETWORKS

64



A Recipe for 
Machine Learning

1. Given training data:

65

Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression, 
Logistic regression, Neural Network

Examples: Mean-squared error, 
Cross Entropy



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

66

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

67

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 

And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

68

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions 
(Neural Networks)

2. Consider variants of this recipe for training



Linear Regression

69

Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a



Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)



Perceptron

73

Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)



Neural Network
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Decision 
Functions

…

…

Output

Input

Hidden Layer



COMPONENTS OF A NEURAL 
NETWORK
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Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Suppose we already learned 
the weights of the neural 
network.

To make a new prediction, we 
take in some new features 
(aka. the input layer) and 
perform the feed-forward 
computation. 



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)
.62 = σ(.50)

Σ = .50

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

Σ = .50 Σ = 1.4

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)
.62 = σ(.50)

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.

Except we only have the 
target value for y at training 

time! 
We have to learn to create 

“useful” values of z1 and z2 in 
the hidden layer.



From Biological to Artificial

Biological “Model”
• Neuron: an excitable cell
• Synapse: connection between 

neurons
• A neuron sends an 

electrochemical pulse along its 
synapses when a sufficient voltage 
change occurs

• Biological Neural Network: 
collection of neurons along some 
pathway through the brain

Artificial Model
• Neuron: node in a directed acyclic 

graph (DAG)

• Weight: multiplier on each edge

• Activation Function: nonlinear 
thresholding function, which allows a 
neuron to “fire” when the input value 
is sufficiently high 

• Artificial Neural Network: collection 
of neurons into a DAG, which define 
some differentiable function

88

Biological “Computation”
• Neuron switching time : ~ 0.001 sec

• Number of neurons: ~ 1010

• Connections per neuron: ~ 104-5

• Scene recognition time: ~ 0.1 sec

Artificial Computation
• Many neuron-like threshold switching 

units

• Many weighted interconnections 
among units

• Highly parallel, distributed processes 

Slide adapted from Eric Xing

The motivation for Artificial Neural Networks comes from biology…



DEFINING A 1-HIDDEN LAYER 
NEURAL NETWORK

89



Neural Networks

Chalkboard
– Example: Neural Network w/1 Hidden Layer
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Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



NONLINEAR DECISION BOUNDARIES 
AND NEURAL NETWORKS

98



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

99

Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

100

Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



Neural Networks

Chalkboard
– 1D Example from linear regression to logistic 

regression
– 1D Example from logistic regression to a neural 

network

101



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

102

Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



DECISION BOUNDARY EXAMPLES
Examples 1 and 2

104
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden

hidden

hiddenhidden



Example #2: One Pocket

113



Example #2: One Pocket

114



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden hidden

hiddenhidden



Neural Network Parameters
Question:
Suppose you are training a 
one-hidden layer neural 
network with sigmoid 
activations for binary 
classification.

True or False: There is a 
unique set of parameters 
that maximize the 
likelihood of the dataset 
above.

121

Answer:
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ARCHITECTURES
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Neural Network

124

Decision 
Functions

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Classification



Neural Networks

Chalkboard
– Example: Neural Network w/2 Hidden Layers
– Example: Feed Forward Neural Network 

(matrix form)

125



Neural Network Architectures

Even for a basic Neural Network, there are 
many design decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters

126



BUILDING DEEPER NETWORKS
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Building a Neural Net

130

…

…

Output

Input

Hidden Layer
D = M

Q: How many hidden units, D, should we use?



Building a Neural Net
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…

…

Output

Input

Hidden Layer
D = M

Q: How many hidden units, D, should we use?



Building a Neural Net
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…

…

Output

Input

Hidden Layer
D < M

What method(s) is 
this setting similar to?

Q: How many hidden units, D, should we use?



Building a Neural Net
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…

…

Output

Input

Hidden Layer
D > M

What method(s) is 
this setting similar to?

Q: How many hidden units, D, should we use?



Deeper Networks
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…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?



Deeper Networks
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…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?



Q: How many layers should we use?

Deeper Networks

136

…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3



Deeper Networks

137

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function 
approximator

– Cybenko (1989): For any continuous function g(x), there 
exists a 1-hidden-layer neural net hθ(x) 
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation 
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers) 

are too hard to train”
– After 2006: “Deep networks are easier to train than shallow 

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.



Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers

138
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

decision



Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers

139
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Faces



Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers

140
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Cars



ACTIVATION FUNCTIONS

144



Activation Functions

145

…

…

Output

Input

Hidden Layer

Neural Network with sigmoid 
activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Activation Functions
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Neural Network with arbitrary 
nonlinear activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (nonlinear)
y = �(b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

…

…

Output

Input

Hidden Layer



Activation Functions
So far, we’ve 
assumed that the 
activation function 
(nonlinearity) is 
always the sigmoid 
function…

…but the sigmoid 
is not widely used 
in modern neural 
networks 

147

Sigmoid (aka. logistic) function

Hyperbolic tangent function



Activation Functions
• sigmoid, σ(x)
– output in range 

(0,1)
– good for 

probabilistic 
outputs

• hyperbolic 
tangent, tanh(x)
– similar shape to 

sigmoid, but 
output in range (-
1,+1)

148

Sigmoid (aka. logistic) function

Hyperbolic tangent function



AI Stats 2010

sigmoid 
vs. 
tanh

depth 5

Figure from Glorot & Bentio (2010)

depth 5
depth 5

depth 5
depth 5



Activation Functions
• Rectified Linear Unit 

(ReLU)
– avoids the vanishing 

gradient problem
– derivative is fast to 

compute
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Activation Functions
• Rectified Linear Unit 

(ReLU)
– avoids the vanishing 

gradient problem
– derivative is fast to 

compute

151

• Exponential Linear 
Unit (ELU)
– same as ReLU on 

positive inputs
– unlike ReLU, allows 

negative outputs and 
smoothly transitions 
for x < 0



Activation Functions

152

1. Training loss 
converges 
fastest with 
ELU

2. ELU(x) yields 
lower test 
error than 
ReLU(x) on 
CIFAR-10

Image Classification Benchmark (CIFAR-10)

Figure from Clevert et al. (2016)



LOSS FUNCTIONS & OUTPUT 
LAYERS
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Neural Network

154

Decision 
Functions

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Classification

…

…

Output

Input

Hidden Layer



Neural Network
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Decision 
Functions

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Regression

y…

…

Output

Input

Hidden Layer



Objective Functions for NNs
1. Quadratic Loss:

– the same objective as Linear Regression
– i.e. mean squared erroradd an additional “softmax” layer at the end 

of our network

156

Forward Backward

Quadratic J =
1

2
(y � y�)2

dJ

dy
= y � y�

Cross Entropy J = y� HQ;(y) + (1 � y�) HQ;(1 � y)
dJ

dy
= y� 1

y
+ (1 � y�)

1

y � 1

Forward Backward

Quadratic J =
1

2
(y � y�)2

dJ

dy
= y � y�

Cross Entropy J = y� HQ;(y) + (1 � y�) HQ;(1 � y)
dJ

dy
= y� 1

y
+ (1 � y�)

1

y � 12. Cross-Entropy:
– the same objective as Logistic Regression
– i.e. negative log likelihood
– This requires probabilities, so we add an additional “softmax” layer 

at the end of our network



Objective Functions for NNs

Figure from Glorot & Bentio (2010)

Cross-entropy vs. Quadratic loss



Multi-Class Output

158

…

…

Output

Input

Hidden Layer

…



Multi-Class Output
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Softmax:

…

…

Output

Input

Hidden Layer

…

yk =
2tT(bk)

�K
l=1 2tT(bl)

(F) Loss
J =

�K
k=1 y�

k HQ;(yk)

(E) Output (softmax)
yk = 2tT(bk)�K

l=1 2tT(bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



DECISION BOUNDARY EXAMPLES
Examples 3 and 4

160



Neural Network Errors
Question A: For which of the datasets below 
does there exist a one-hidden layer neural 
network that achieves zero classification
error? Select all that apply.
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Question B: For which of the datasets 
below does there exist a one-hidden layer 
neural network for regression that achieves 
nearly zero MSE? Select all that apply.

A) B)

C) D)

A) B)

C) D)
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians
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hidden



Example #4: Two Pockets
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Example #4: Two Pockets

171



Example #4: Two Pockets

172



Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary 

logistic regression, multinomial logistic regression) as 
components to build up feed-forward neural network 
architectures

• Explain the reasons why a neural network can model 
nonlinear decision boundaries for classification

• Compare and contrast feature engineering with learning 
features

• Identify (some of) the options available when designing 
the architecture of a neural network

• Implement a feed-forward neural network
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