
Neural Networks

1

10-301/601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 11

Oct. 6, 2021

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Q&A

2

Q: How can I get more one-on-one interaction with the
course staff?

A:
Attend office hours as soon after the homework release
as possible!

Q&A

3

Q: “Why are there fewer OHs now?”

A:
Wrong question. I think what you meant was:

“I just noticed that you guys are modeling office hour demand
and adaptively scaling the number of office hours and number
of TAs present to maximize contact time when I really need it!
How can I be more like your awesome TAs?”

Great question. Spend more time talking with them at OHs,
whenever you want and we’ll adapt.

And yes, we are actually increasing the (amortized) amount of
OHs per TA, but it’s hard to observe if you’re just looking at the
calendar.

Reminders

• Post-Exam Followup:

– Exam Viewing
– Exit Poll: Exam 1
– Grade Summary 1

• Homework 4: Logistic Regression

– Out: Fri, Oct. 1
– Due: Mon, Oct. 11 at 11:59pm

• Swapped lecture/recitation:

– Lecture 12: Fri, Oct. 8

4

Q&A

5

Q: Am I good enough?

A: Exam 1 cannot answer that question for
you. It can only answer the following:

“How well did you perform on a timed
standardized test taken on the 30th of
September on the topics of decision trees,
k-nearest neighbors, perceptron, and linear
regression.”

Q&A

6

Q: Can it answer any of these questions?

• “Will I someday become a machine learning
scientist?”

• “Will I get that internship?”

• “How successful will I be in my future
endeavors?”

• “Am I going to have impact on the world?”

• “How many licks does it take to get to the
center of a Tootsie Pop™?”

A: No

7

REGULARIZATION

8

Example: Linear Regression

9x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

… … … … …

10 1.1 1.9 … (1.9)9

Polynomial Coefficients

Slide courtesy of William Cohen

Example: Linear Regression

11x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

• With just N = 10
points we overfit!

• But with N = 100
points, the
overfitting
(mostly)
disappears

• Takeaway: more
data helps
prevent
overfitting

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

3 0.1 2.7 … (2.7)9

4 1.1 1.9 … (1.9)9

… … … … …

… … … … …

… … … … …

98 … … … …

99 … … … …

100 0.9 1.5 … (1.5)9

Overfitting
Definition: The problem of overfitting is when

the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen

so far:

– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)

12

Motivation: Regularization

• Occam’s Razor: prefer the simplest
hypothesis

• What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)
2. small number of “important” features

(shrinkage)

14

Regularization
• Given objective function: J(θ)
• Goal is to find:

• Key idea: Define regularizer r(θ) s.t. we tradeoff
between fitting the data and keeping the model
simple

• Choose form of r(θ):
– Example: q-norm (usually p-norm):

15

! ! = #
"#$

%
$" !

$
!

Regularization

17

Question:
Suppose we are minimizing J’(θ) where

As λ increases, the minimum of J’(θ)
will…

A. …move towards the midpoint
between J(θ) and r(θ)

B. …move towards the minimum of J(θ)
C. …move towards the minimum of r(θ)
D. …move towards a theta vector of

positive infinities
E. …move towards a theta vector of

negative infinities
F. …stay the same

18

19

Regularization

23

Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is

usually denoted by $& -- that is, the parameter for which
we fixed %& = 1

• Regularizers always avoid penalizing this bias / intercept
parameter

• Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Whitening Data
• It’s common to whiten each feature by subtracting its

mean and dividing by its variance

• For regularization, this helps all the features be penalized
in the same units
(e.g. convert both centimeters and kilometers to z-scores)

Regularization Exercise
In-class Exercise
1. Plot train error vs. regularization weight (cartoon)
2. Plot validation error vs . regularization weight (cartoon)

24

er
ro

r

regularization weight

Example: Logistic Regression
• For this example, we

construct nonlinear features
(i.e. feature engineering)

• Specifically, we add
polynomials up to order 9 of
the two original features x1
and x2

• Thus our classifier is linear in
the high-dimensional
feature space, but the
decision boundary is
nonlinear when visualized in
low-dimensions (i.e. the
original two dimensions)

28

Training
Data

Test
Data

Example: Logistic Regression

30

Example: Logistic Regression

31

Example: Logistic Regression

32

Example: Logistic Regression

33

Example: Logistic Regression

34

Example: Logistic Regression

35

Example: Logistic Regression

36

Example: Logistic Regression

37

Example: Logistic Regression

38

Example: Logistic Regression

39

Example: Logistic Regression

40

Example: Logistic Regression

41

Example: Logistic Regression

42

Example: Logistic Regression

43

lambda

er
ro

r

Regularization as MAP

• L1 and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation

of the parameters
• To be discussed later in the course…

44

Takeaways

1. Nonlinear basis functions allow linear

models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

2. Nonlinear features are require no changes

to the model (i.e. just preprocessing)
3. Regularization helps to avoid overfitting

4. Regularization and MAP estimation are
equivalent for appropriately chosen priors

46

Feature Engineering / Regularization
Objectives

You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and

remove irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to

combat overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly

separable dataset in higher dimensions
• Describe feature engineering in common application

areas

47

NEURAL NETWORKS

64

A Recipe for
Machine Learning

1. Given training data:

65

Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression,
Logistic regression, Neural Network

Examples: Mean-squared error,
Cross Entropy

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

66

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

67

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

Gradients

Backpropagation can compute this
gradient!

And it’s a special case of a more
general algorithm called reverse-
mode automatic differentiation that
can compute the gradient of any
differentiable function efficiently!

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

68

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions
(Neural Networks)

2. Consider variants of this recipe for training

Linear Regression

69

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a

Logistic Regression

70

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Perceptron

73

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Neural Network

74

Decision
Functions

…

…

Output

Input

Hidden Layer

COMPONENTS OF A NEURAL
NETWORK

75

Neural Network

76

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Suppose we already learned
the weights of the neural
network.

To make a new prediction, we
take in some new features
(aka. the input layer) and
perform the feed-forward
computation.

Neural Network

77

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)
.62 = σ(.50)

Σ = .50

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

78

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

Σ = .50 Σ = 1.4

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

79

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

80

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)
.62 = σ(.50)

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

81

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Except we only have the
target value for y at training

time!
We have to learn to create

“useful” values of z1 and z2 in
the hidden layer.

From Biological to Artificial

Biological “Model”
• Neuron: an excitable cell
• Synapse: connection between

neurons
• A neuron sends an

electrochemical pulse along its
synapses when a sufficient voltage
change occurs

• Biological Neural Network:
collection of neurons along some
pathway through the brain

Artificial Model
• Neuron: node in a directed acyclic

graph (DAG)

• Weight: multiplier on each edge

• Activation Function: nonlinear
thresholding function, which allows a
neuron to “fire” when the input value
is sufficiently high

• Artificial Neural Network: collection
of neurons into a DAG, which define
some differentiable function

88

Biological “Computation”
• Neuron switching time : ~ 0.001 sec

• Number of neurons: ~ 1010

• Connections per neuron: ~ 104-5

• Scene recognition time: ~ 0.1 sec

Artificial Computation
• Many neuron-like threshold switching

units

• Many weighted interconnections
among units

• Highly parallel, distributed processes

Slide adapted from Eric Xing

The motivation for Artificial Neural Networks comes from biology…

DEFINING A 1-HIDDEN LAYER
NEURAL NETWORK

89

Neural Networks

Chalkboard
– Example: Neural Network w/1 Hidden Layer

90

Neural Network

92

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

93

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

94

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

95

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

96

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

97

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

NONLINEAR DECISION BOUNDARIES
AND NEURAL NETWORKS

98

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

99

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

100

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example

Neural Networks

Chalkboard
– 1D Example from linear regression to logistic

regression
– 1D Example from logistic regression to a neural

network

101

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

102

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

103

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example

DECISION BOUNDARY EXAMPLES
Examples 1 and 2

104

105

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets

Example #1: Diagonal Band

106

Example #1: Diagonal Band

107

Example #1: Diagonal Band

108

hidden

Example #1: Diagonal Band

109

hidden

Example #1: Diagonal Band

110

hidden

Example #1: Diagonal Band

111

hidden

Example #1: Diagonal Band

112

hidden

hidden

hiddenhidden

Example #2: One Pocket

113

Example #2: One Pocket

114

Example #2: One Pocket

115

hidden

Example #2: One Pocket

116

hidden

Example #2: One Pocket

117

hidden

Example #2: One Pocket

118

hidden

Example #2: One Pocket

119

hidden

Example #2: One Pocket

120

hidden hidden

hiddenhidden

Neural Network Parameters
Question:
Suppose you are training a
one-hidden layer neural
network with sigmoid
activations for binary
classification.

True or False: There is a
unique set of parameters
that maximize the
likelihood of the dataset
above.

121

Answer:

122

ARCHITECTURES

123

Neural Network

124

Decision
Functions

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Classification

Neural Networks

Chalkboard
– Example: Neural Network w/2 Hidden Layers
– Example: Feed Forward Neural Network

(matrix form)

125

Neural Network Architectures

Even for a basic Neural Network, there are
many design decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters

126

BUILDING DEEPER NETWORKS

127

Building a Neural Net

130

…

…

Output

Input

Hidden Layer
D = M

Q: How many hidden units, D, should we use?

Building a Neural Net

131

…

…

Output

Input

Hidden Layer
D = M

Q: How many hidden units, D, should we use?

Building a Neural Net

132

…

…

Output

Input

Hidden Layer
D < M

What method(s) is
this setting similar to?

Q: How many hidden units, D, should we use?

Building a Neural Net

133

…

…

Output

Input

Hidden Layer
D > M

What method(s) is
this setting similar to?

Q: How many hidden units, D, should we use?

Deeper Networks

134

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?

Deeper Networks

135

…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?

Q: How many layers should we use?

Deeper Networks

136

…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3

Deeper Networks

137

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function
approximator

– Cybenko (1989): For any continuous function g(x), there
exists a 1-hidden-layer neural net hθ(x)
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers)

are too hard to train”
– After 2006: “Deep networks are easier to train than shallow

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.

Feature Learning
• Traditional feature

engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

138
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

decision

Feature Learning
• Traditional feature

engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

139
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Faces

Feature Learning
• Traditional feature

engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

140
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Cars

ACTIVATION FUNCTIONS

144

Activation Functions

145

…

…

Output

Input

Hidden Layer

Neural Network with sigmoid
activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Activation Functions

146

Neural Network with arbitrary
nonlinear activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (nonlinear)
y = �(b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

…

…

Output

Input

Hidden Layer

Activation Functions
So far, we’ve
assumed that the
activation function
(nonlinearity) is
always the sigmoid
function…

…but the sigmoid
is not widely used
in modern neural
networks

147

Sigmoid (aka. logistic) function

Hyperbolic tangent function

Activation Functions
• sigmoid, σ(x)
– output in range

(0,1)
– good for

probabilistic
outputs

• hyperbolic
tangent, tanh(x)
– similar shape to

sigmoid, but
output in range (-
1,+1)

148

Sigmoid (aka. logistic) function

Hyperbolic tangent function

AI Stats 2010

sigmoid
vs.
tanh

depth 5

Figure from Glorot & Bentio (2010)

depth 5
depth 5

depth 5
depth 5

Activation Functions
• Rectified Linear Unit

(ReLU)
– avoids the vanishing

gradient problem
– derivative is fast to

compute

150

Activation Functions
• Rectified Linear Unit

(ReLU)
– avoids the vanishing

gradient problem
– derivative is fast to

compute

151

• Exponential Linear
Unit (ELU)
– same as ReLU on

positive inputs
– unlike ReLU, allows

negative outputs and
smoothly transitions
for x < 0

Activation Functions

152

1. Training loss
converges
fastest with
ELU

2. ELU(x) yields
lower test
error than
ReLU(x) on
CIFAR-10

Image Classification Benchmark (CIFAR-10)

Figure from Clevert et al. (2016)

LOSS FUNCTIONS & OUTPUT
LAYERS

153

Neural Network

154

Decision
Functions

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Classification

…

…

Output

Input

Hidden Layer

Neural Network

155

Decision
Functions

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Regression

y…

…

Output

Input

Hidden Layer

Objective Functions for NNs
1. Quadratic Loss:

– the same objective as Linear Regression
– i.e. mean squared erroradd an additional “softmax” layer at the end

of our network

156

Forward Backward

Quadratic J =
1

2
(y � y�)2

dJ

dy
= y � y�

Cross Entropy J = y� HQ;(y) + (1 � y�) HQ;(1 � y)
dJ

dy
= y� 1

y
+ (1 � y�)

1

y � 1

Forward Backward

Quadratic J =
1

2
(y � y�)2

dJ

dy
= y � y�

Cross Entropy J = y� HQ;(y) + (1 � y�) HQ;(1 � y)
dJ

dy
= y� 1

y
+ (1 � y�)

1

y � 12. Cross-Entropy:
– the same objective as Logistic Regression
– i.e. negative log likelihood
– This requires probabilities, so we add an additional “softmax” layer

at the end of our network

Objective Functions for NNs

Figure from Glorot & Bentio (2010)

Cross-entropy vs. Quadratic loss

Multi-Class Output

158

…

…

Output

Input

Hidden Layer

…

Multi-Class Output

159

Softmax:

…

…

Output

Input

Hidden Layer

…

yk =
2tT(bk)

�K
l=1 2tT(bl)

(F) Loss
J =

�K
k=1 y�

k HQ;(yk)

(E) Output (softmax)
yk = 2tT(bk)�K

l=1 2tT(bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

DECISION BOUNDARY EXAMPLES
Examples 3 and 4

160

Neural Network Errors
Question A: For which of the datasets below
does there exist a one-hidden layer neural
network that achieves zero classification
error? Select all that apply.

161

Question B: For which of the datasets
below does there exist a one-hidden layer
neural network for regression that achieves
nearly zero MSE? Select all that apply.

A) B)

C) D)

A) B)

C) D)

162

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets

Example #3: Four Gaussians

163

Example #3: Four Gaussians

164

Example #3: Four Gaussians

165

Example #3: Four Gaussians

166

hidden

Example #3: Four Gaussians

167

hidden

Example #3: Four Gaussians

168

hidden

Example #3: Four Gaussians

169

hidden

Example #4: Two Pockets

170

Example #4: Two Pockets

171

Example #4: Two Pockets

172

Example #4: Two Pockets

173

Example #4: Two Pockets

174

Example #4: Two Pockets

175

hidden

Example #4: Two Pockets

176

hidden

Example #4: Two Pockets

177

hidden

Example #4: Two Pockets

178

hidden

Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary

logistic regression, multinomial logistic regression) as
components to build up feed-forward neural network
architectures

• Explain the reasons why a neural network can model
nonlinear decision boundaries for classification

• Compare and contrast feature engineering with learning
features

• Identify (some of) the options available when designing
the architecture of a neural network

• Implement a feed-forward neural network

179

