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Reminders

* Homework 5: Neural Networks
— Out: Mon, Oct. 11
— Due: Thu, Oct. 21 at 11:59pm



Q&A
Q: What is proof by contraposition?
A: A :5@ | ﬂB::'> ’1/\

* “If A, then B” is logically equivalent to
“If not B then, not A”

* Ex: “if it’s raining, | bring my umbrella”
implies “if | don’t bring my umbrella, it’s not
raining’’ and vice versa



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 1[log(|H|) + log(})] la-
Fini beled examples are sufficient so that with

te |H| probability (1 —4) all h € H with R(h) = 0
have R(h) < e.

Infinite |H|




Example: Conjunctions

Question:

Suppose H = class of
conjunctions over x in {0,1}"

Example hypotheses:
h(x) = X, (1-X5) X,
h(x) = x, (1) X, (1%;)

If M =10, € = 0.1, 5 = 0.01, how
many examples suffice
according to Theorem 12

Answer:

10*(2*In(10)+In(100 )) = 92
10*(3*In(10)+In(100)) = 116
10*(10*In(2)+In(100 )) = 116
10*(10*In(3)+In(100)) = 156
100*(2*In(10)+In(10 )) = 691
100*(3*In(10)+In(10)) = 922
100*(10*In(2)+In(10 )) = 924
100*(10*In(3)+In(10)) = 1329

ITOmMmoNwP

Thm. 1+ N >

L log(|H|) + log(3)] la-

beled examples are sufficient so that with
probability (1—-d)allh € Hwith R(h) = 0

have R(h) < e.
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Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).
Four Cases we care about...

Realizable

Agnostic

Thm. 1 N > ![log(|H|) + log(})] la-
Fini beled examples are sufficient so that with

te |H| probability (1—4) all h € H with R(h) = 0
have R(h) < e.

Thm. 2 N > ;4 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — &) forall h € H we
have that |R(h) — R(h)| < e.

Infinite |H|
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Finite |H|

Infinite ||

1. Boundis inversely linear in 1.
epsilon (e.g. halving the error P
requires double the examples)

2. Boundis only logarithmicin  [€]2.
[H| (e.g. quadrupling the
hypothesis space only requires
double the examples)

Bound is inversely quadratic in
epsilon (e.g. halving the error
requires 4x the examples)

Bound is only logarithmic in
[H| (i.e. same as Realizable
case)

Realizable

% Agnostic

Thm. 1 N > Illog(|H|) + log(})] la-
beled examples are sufficient so that with
probability (1—4) all h € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 2'13 [l()g(|'H|) + log(f)]
labeled examples are sufficient so that
with probability (1 — o) forall h € H we
have that |R(h) — R(h)| < e.




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).
Four Cases we care about...

Realizable

Agnostic

Thm. 1 N > ![log(|H|) + log(})] ‘Ia-

.Thm. 2 N > ;i [log(|H]) + log(%)]

Fini beled examples are sufficient sq==
te |H‘ probability (1—4) all h € H wit
have R(h) < e.

for these results (see VC Dimension)

We need a new definition of fficient so that
“complexity” for a Hypothesis space P’ allh € Hwe

6.

-

Infinite |H| y

74
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Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > ![log(|H|) + log(})] la-
beled examples are sufficient so that with
probability (1— &) all h € H with R(h) = 0
have R(h) < e.

Thm. 2 N > ;4 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — 4) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N:()(‘l [VC(H) l()g(%) - log(%)])
labeled examples are sufficient so that
with probability (1 — §) all h € H with

-~

R(h) = O have R(h) <e.

Thm. 4 N = O(% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that | R(h) — R(h)| < e.
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VC-DIMENSION



Labelings & Shattering

Def: A hypothesis h applied to some dataset S
generates a labeling of S.

Def: Let H | S| be the set of all (distinct)
labelings of S generated by hypotheses h € ..

H shatters S if |7 [S]| = 2/5]

Equivalently, the hypotheses in H can
generate every possible [abeling of S.



Labelings & Shattering

Whiteboard:
— Shattering example: binary classification



VC-dimension

Def: The VC-dimension (or Vaporik-
Chervonenkis dimension) of H is the
cardinality of the largest set S such that H
can shatter S.

If H can shatter arbitrarily large finite sets,
then the VC-dimension of H is infinity



VC-dimension

Whiteboard:
— VC-dimension Example: linear separators

— Proof sketch of VC-dimension for linear
separators in 2D



4 vs.V

VC-dimension

— Proving VC-dimension requires us to show that
there exists (3) a dataset of size d that can be
shattered and that there does not exist (7) a
dataset of size d+1 that can be shattered

Shattering

— Proving that a particular dataset can be
shattered requires us to show that for all (V)
labelings of the dataset, our hypothesis class
contains a hypothesis that can correctly classify it

29



VC-dimension Examples

 Definition: If VC(H) = d, then there exists (3) a dataset of size d that can
be shattered and that there does not exist (Z) a dataset of size d+1 that
can be shattered

Question:

What is the VC-dimension of H = 1D positive rays. That is for a threshold w,
everything to the right of w is labeled as +1, everything else is labeled -1.

- +

Answer:
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VC-dimension Examples

 Definition: If VC(H) = d, then there exists (3) a dataset of size d that can
be shattered and that there does not exist (Z) a dataset of size d+1 that
can be shattered

Question:

What is the VC-dimension of H = 1D positive intervals. That is for an interval

(w,, w,), everything inside the interval is labeled as +1, everything else is
labeled -1.

Answer:
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Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > ![log(|H|) + log(})] la-
beled examples are sufficient so that with
probability (1— &) all h € H with R(h) = 0
have R(h) < e.

Thm. 2 N > ;4 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — 4) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N:()(‘l [VC(H) l()g(%) - log(%)])
labeled examples are sufficient so that
with probability (1 — §) all h € H with

-~

R(h) = O have R(h) <e.

Thm. 4 N = O(% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that | R(h) — R(h)| < e.
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SLT-style Corollaries

Thm. 1+ N > 1log(|H|) + log(})] la-
beled examples are sufficient so that with
probability (1—4) all h € H with R(h) = 0
have R(h) < e.

Solve the inequality in Thm.1 for
epsilon to obtain Corollary 1

N

Corollary 1 (Realizable, Finite |7{|). For some d > 0, with probabil-

ity at least (1 — §), for any h in H consistent with the training data
(i.e. R(h) =0),

We can obtain

1 1 similar corollaries for
R(h) < lln(I’HI) +1In (-)] each of the

) theorems...

39



SLT-style Corollaries

Corollary 1 (Realizable, Finite |7{|). For some d > 0, with probabil-
ity at least (1 — ¢), for any h in H consistent with the training data
(i.e. R(h) =0),

R(h) < % [m(rm) +1n (;)]

Corollary 2 (Agnostic, Finite |#|). Forsomed > 0, with probability
at least (1 — ), for all hypotheses h in H,

R(h) < R(h) + \/ o [0 +1n ()]

40



SLT-style Corollaries

Corollary 3 (Realizable, Infinite |#|). For some § > 0, with proba-
bility at least (1 — d), for any hypothesis & in H consistent with the
data (i.e. with R(h) = 0),

R(h) < O (% [VC(H)ln (\%H)) s (%)D (1)

Corollary 4 (Agnostic, Infinite |H|). Forsome d > 0, with probabil-
ity at least (1 — 9), for all hypotheses hin H,

R(h) < R(h) + O (\/% [vc:(u) +In (%)]) )

41




SLT-style Corollaries

Corollary 3 (Realizable, Infinite |#{|). For some é > 0, with proba-
bility at least (1 — ), for any hypothesis  in H consistent with the
data (i.e. with R(h) = 0),

<ok proom i) (D)) 0

Corollary 4 (Agnostic, Infinite |#{|). Forsome ¢ > 0, with probabil-
ity at least (1 — 4), for all hypotheses hin H,

R(h) < R(h) + O (\/% [VC(H) +In (%)]) 2)
\

Should these corollaries inform
how we do model selection? -




Generalization and Overfitting

Whiteboard:
— Model Selection
— Empirical Risk Minimization
— Structural Risk Minimization
— Motivation for Regularization



1.

Questions For Today

Given a classifier with zero training error, what
can we say about generalization error?
(Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about generalization error?
(Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)

47



Learning Theory Objectives

You should be able to...

|dentify the properties of a learning setting and
assumptions required to ensure low generalization
error

Distinguish true error, train error, test error

Define PAC and explain what it means to be
approximately correct and what occurs with high
probability

Apply sample complexity bounds to real-world
learning examples

Distinguish between a large sample and a finite
sample analysis

Theoretically motivate regularization



THE BIG PICTURE



ML Big Picture

Learning Paradigms:

What data is available and
when? What form of prediction?
. supervised learning

. unsupervised learning

. semi-supervised learning

O reinforcement learning

. active learning

O imitation learning

. domain adaptation

O online learning

- density estimation

*  recommender systems

e feature learning

O manifold learning

. dimensionality reduction

. ensemble learning

- distant supervision

. hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

ML as optimization

CDCOO00

Problem Formulation:

What is the structure of our output prediction? )
boolean Binary Classification T :S
categorical Multiclass Classification 438
ordinal Ordinal Classification ) - 2“
real Regression O~ SY
ordering Ranking E %’0 {::_é
multiple discrete  Structured Prediction g é 7 o%
multiple continuous (e.g. dynamical systems) g = ‘%C“'S
both discrete & (e.g. mixed graphical models) E ; 5‘% S
cont. << z53H
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2.  Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

* inductive bias

* generalization / overfitting

*  bias-variance decomposition
e generative vs. discriminative
e deep nets, graphical models
*  PAClearning

e distant rewards



ML Big Picture

Whiteboard
— Decision Rules [ Models
— Objective Functions
— Regularization
— Optimization



PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p*(-)
yW = ¢*(x)

Our goal was to learn a
hypothesis h(x) that best
approximates ¢*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p*()
y W~ p(-x1?)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|[x)



PROBABILITY



Random Variables: Definitions

Discrete Random variable whose values come
Random X from a countable set (e.g. the natural
Variable numbers or {True, False})

Probability p(.CE) Function giving the probability that
mass discrete r.v. X takes value x.

function

(pmf)

p(z) = P(X = x)




Random Variables: Definitions

Continuous Random variable whose values come
Random X from an interval or collection of
Variable intervals (e.g. the real numbers or the
range (3, 5))
Probability f (CE) Function the returns a nonnegative
density real indicating the relative likelihood
function that a continuous r.v. X takes value x
(pdf)

* For any continuous random variable: P(X =x) = 0

* Non-zero probabilities are only available to intervals:

P(aﬁXﬁb):/bf(x)de’




Random Variables: Definitions

Cumulative Function that returns the probability
distribution F(ZE) that a random variable X is less than or
function equal to x:

F(zx)=P(X < x)

* For discrete random variables:

F(x) = P(X < x) ZP ’):Zp(x’

r' <x r' <x

* For continuous random variables:

F(:I:):P(Xga:):/x f(x")dx'




Notational Shortcuts

A convenient shorthand:
P(A, B)
P(B)
= For all values of a and b:

P(A|B) =

P(A=a|B=0) =




Notational Shortcuts
But then how do we tell P(E) apart from P(X) ?
[event |<A [Tangan |<A
Instead of writing: P(A, B)
P(A|B) =
(A1B) = 5o
We should write: P4 (A, B)

... but only probability theory textbooks go to such lengths.



COMMON PROBABILITY
DISTRIBUTIONS



Common Probability Distributions

 For Discrete Random Variables:
— Bernoulli
— Binomial
— Multinomial
— Categorical
— Poisson
 For Continuous Random Variables:
— Exponential
— Gamma
— Beta
— Dirichlet
— Laplace
— Gaussian (1D)
— Multivariate Gaussian



Common Probability Distributions

Beta Distribution

probability density function:

F(Bla ) = =

xa—l —ajﬁ_l
@p” 170

— a=0.1,6=0.9
— a=0.5,6=0.5
— a=1.0,6=1.0
— a=5.0,6=5.0
— a=10.0,6=5.0

f(dla, )




Common Probability Distributions

Dirichlet Distribution

probability density function:

f(dlas B) = 5

xa—l —ajﬁ_l
@p” 170

— a=0.1,6=0.9
— a=0.5,6=0.5
— a=1.0,6=1.0
— a=5.0,6=5.0
— a=10.0,8=5.0

f(dla, )




Common Probability Distributions

Dirichlet Distribution

probability density function:

1

p(d]c) =




EXPECTATION AND VARIANCE



Expectation and Variance

The expected value of X'is E/X]. Also called the mean.

* Discrete random variables:

Suppose X can take any value in the set X'.

BIX] =Y ap()

reX




Expectation and Variance

The variance of Xis Var(X).
Var(X) = E[(X — E[X))?]

* Discrete random variables:

Var(X) = 3" (@ = p)p(a)

reX




MULTIPLE RANDOM VARIABLES



Joint Probability

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

e We call this a joint ensemble and write
p(x,y) = prob(X =z and Y = y)

Z

TN

p(x.y.z)

Slide from Sam Roweis (MLSS, 2005)



Marginal Probabilities

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(z) =Y plz,y)
Y

e This is like adding slices of the table together.

}V p(x.y)
e

y X

X

e Another equivalent definition: p(z) = >, p(z|y)p(y).

Slide from Sam Roweis (MLSS, 2005)



Conditional Probability

e If we know that some event has occurred, it changes our belief
about the probability of other events.

e This is like taking a "slice” through the joint table.

p(zly) = plz,y)/p(y)

N

Z\

p(x.ylz)

Slide from Sam Roweis (MLSS, 2005)



Independence and
Conditional Independence

e Two variables are independent iff their joint factors:

p(z,y) = p(x)p(y)

p(x.y)

px)

p(y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(z,y|z) = p(z|z)p(ylz)  Vz

Slide from Sam Roweis (MLSS, 2005)



