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Reminders

• Homework 5: Neural Networks
– Out: Mon, Oct. 11
– Due: Thu, Oct. 21 at 11:59pm
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Q&A
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Q: What is proof by contraposition?

A:

• “If A, then B” is logically equivalent to                 
“If not B then, not A”

• Ex: “if it’s raining, I bring my umbrella” 
implies “if I don’t bring my umbrella, it’s not 
raining” and vice versa



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



Example: Conjunctions
Question:
Suppose H = class of 
conjunctions over x in {0,1}M

Example hypotheses:
h(x) = x1 (1-x3) x5
h(x) = x1 (1-x2) x4 (1-x5)

If M = 10, ! = 0.1, δ = 0.01, how 
many examples suffice 
according to Theorem 1?
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Answer:
A. 10*(2*ln(10)+ln(100 )) ≈ 92
B. 10*(3*ln(10)+ln(100)) ≈ 116
C. 10*(10*ln(2)+ln(100 )) ≈ 116
D. 10*(10*ln(3)+ln(100)) ≈ 156
E. 100*(2*ln(10)+ln(10 )) ≈ 691
F. 100*(3*ln(10)+ln(10)) ≈ 922
G. 100*(10*ln(2)+ln(10 )) ≈ 924
H. 100*(10*ln(3)+ln(10)) ≈ 1329
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

1. Bound is inversely linear in 
epsilon (e.g. halving the error 
requires double the examples)

2. Bound is only logarithmic in 
|H| (e.g. quadrupling the 
hypothesis space only requires 
double the examples)

1. Bound is inversely quadratic in 
epsilon (e.g. halving the error 
requires 4x the examples)

2. Bound is only logarithmic in 
|H| (i.e. same as Realizable 
case) 



Sample Complexity Results

15

Realizable Agnostic

Four Cases we care about…

We need a new definition of 
“complexity” for a Hypothesis space 
for these results (see VC Dimension)



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



VC-DIMENSION
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Def: A hypothesis ℎ applied to some dataset "
generates a labeling of ".

Def: Let ℋ["] be the set of all (distinct) 
labelings of " generated by hypotheses ℎ ∈ ℋ. 
ℋ shatters " if ℋ " = 2 !

Equivalently, the hypotheses in ℋ can 
generate every possible labeling of ".

Labelings & Shattering



Whiteboard:
– Shattering example: binary classification

21

Labelings & Shattering
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Def: The VC-dimension (or Vaporik-
Chervonenkis dimension) of ℋ is the 
cardinality of the largest set " such that ℋ
can shatter ".

If ℋ can shatter arbitrarily large finite sets,
then the VC-dimension of ℋ is infinity

VC-dimension



Whiteboard:
– VC-dimension Example: linear separators

– Proof sketch of VC-dimension for linear 

separators in 2D
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VC-dimension



∃ vs. ∀
VC-dimension
– Proving VC-dimension requires us to show that 

there exists (∃) a dataset of size d that can be 

shattered and that there does not exist (∄) a 

dataset of size d+1 that can be shattered

Shattering
– Proving that a particular dataset can be 

shattered requires us to show that for all (∀) 

labelings of the dataset, our hypothesis class 

contains a hypothesis that can correctly classify it
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VC-dimension Examples
• Definition: If VC(H) = d, then there exists (∃) a dataset of size d that can 

be shattered and that there does not exist (∄) a dataset of size d+1 that 
can be shattered
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Answer:

Question:
What is the VC-dimension of H = 1D positive rays. That is for a threshold w, 
everything to the right of w is labeled as +1, everything else is labeled -1.

+-
w
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VC-dimension Examples
• Definition: If VC(H) = d, then there exists (∃) a dataset of size d that can 

be shattered and that there does not exist (∄) a dataset of size d+1 that 
can be shattered
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Answer:

Question:
What is the VC-dimension of H = 1D positive intervals. That is for an interval 
(w1, w2), everything inside the interval is labeled as +1, everything else is 
labeled -1.

+- -
w1 w2



35



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



SLT-style Corollaries
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Solve the inequality in Thm.1 for 
epsilon to obtain Corollary 1

We can obtain 
similar corollaries for 

each of the 
theorems…



SLT-style Corollaries
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SLT-style Corollaries
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SLT-style Corollaries
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Should these corollaries inform 
how we do model selection?



Generalization and Overfitting

Whiteboard:
– Model Selection

– Empirical Risk Minimization

– Structural Risk Minimization

– Motivation for Regularization
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Questions For Today
1. Given a classifier with zero training error, what 

can we say about generalization error?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what 
can we say about generalization error?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for 
regularization to avoid overfitting?
(Structural Risk Minimization)
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Learning Theory Objectives
You should be able to…
• Identify the properties of a learning setting and 

assumptions required to ensure low generalization 
error

• Distinguish true error, train error, test error
• Define PAC and explain what it means to be 

approximately correct and what occurs with high 
probability

• Apply sample complexity bounds to real-world 
learning examples

• Distinguish between a large sample and a finite 
sample analysis

• Theoretically motivate regularization
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THE BIG PICTURE
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?

boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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ML Big Picture

Whiteboard
– Decision Rules / Models 

– Objective Functions 

– Regularization 

– Optimization
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PROBABILISTIC LEARNING
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Probabilistic Learning

Function Approximation
Previously, we assumed that our 
output was generated using a 
deterministic target function:

Our goal was to learn a 
hypothesis h(x) that best 
approximates c*(x)

Probabilistic Learning
Today, we assume that our 
output is sampled from a 
conditional probability 
distribution:

Our goal is to learn a probability 
distribution p(y|x) that best 
approximates p*(y|x)
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PROBABILITY
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Random Variables: Definitions
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Discrete 
Random
Variable

Random variable whose values come 
from a countable set (e.g. the natural 
numbers or {True, False})

Probability 
mass 
function 
(pmf)

Function giving the probability that 
discrete r.v. X takes value x.

X

p(x) := P (X = x)

p(x)



Random Variables: Definitions

58

Continuous 
Random
Variable

Random variable whose values come 
from an interval or collection of 
intervals (e.g. the real numbers or the 
range (3, 5))

Probability 
density 
function 
(pdf)

Function the returns a nonnegative 
real indicating the relative likelihood 
that a continuous r.v. X takes value x

X

f(x)

• For any continuous random variable: P(X = x) = 0
• Non-zero probabilities are only available to intervals: 

P (a � X � b) =

� b

a
f(x)dx



Random Variables: Definitions
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Cumulative
distribution 
function

Function that returns the probability 
that a random variable X is less than or 
equal to x:

F (x)

F (x) = P (X � x)

• For discrete random variables:

• For continuous random variables:

F (x) = P (X � x) =
�

x�<x

P (X = x�) =
�

x�<x

p(x�)

F (x) = P (X � x) =

� x

��
f(x�)dx�



Notational Shortcuts
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P (A|B) =
P (A, B)

P (B)

� For all values of a and b:

P (A = a|B = b) =
P (A = a, B = b)

P (B = b)

A convenient shorthand:



Notational Shortcuts

But then how do we tell P(E) apart from P(X) ?

61

Event Random
Variable

P (A|B) =
P (A, B)

P (B)
Instead of writing:

We should write:
PA|B(A|B) =

PA,B(A, B)

PB(B)

…but only probability theory textbooks go to such lengths.



COMMON PROBABILITY 
DISTRIBUTIONS
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Common Probability Distributions
• For Discrete Random Variables:

– Bernoulli
– Binomial
– Multinomial
– Categorical
– Poisson

• For Continuous Random Variables:
– Exponential
– Gamma
– Beta
– Dirichlet
– Laplace
– Gaussian (1D)
– Multivariate Gaussian
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Common Probability Distributions

Beta Distribution

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
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016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

f(⌅|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⌅cx�V
v=1

⇥C
c=1 ⌅cv

(1)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⇥c over the V words from a Dirichlet
parametrized by �. Next, we generate a K ⇥ C binary matrix using the finite IBP prior. We select
the probability ⇤c of each component c being on (bkc = 1) from a Beta distribution parametrized

1
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Æ = 1.0,Ø = 1.0
Æ = 5.0,Ø = 5.0
Æ = 10.0,Ø = 5.0

probability density function:



Common Probability Distributions

Dirichlet Distribution
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Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

f(⌅|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⌅cx�V
v=1

⇥C
c=1 ⌅cv

(1)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⇥c over the V words from a Dirichlet
parametrized by �. Next, we generate a K ⇥ C binary matrix using the finite IBP prior. We select
the probability ⇤c of each component c being on (bkc = 1) from a Beta distribution parametrized
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probability density function:



Common Probability Distributions

Dirichlet Distribution
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Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

Beta

f(⇤|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

Dirichlet

p(⌅⇤|�) =
1

B(�)

K⇤

k=1

⇤�k�1
k where B(�) =

⇥K
k=1 �(�k)

�(
�K

k=1 �k)
(1)

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
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probability density function:



EXPECTATION AND VARIANCE
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Expectation and Variance

68

• Discrete random variables:

E[X] =
�

x�X
xp(x)

Suppose X can take any value in the set X .

• Continuous random variables:

E[X] =

� +�

��
xf(x)dx

The expected value of X is E[X]. Also called the mean.



Expectation and Variance
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The variance of X is Var(X).
V ar(X) = E[(X � E[X])2]

• Discrete random variables:

V ar(X) =
�

x�X
(x � µ)2p(x)

• Continuous random variables:

V ar(X) =

� +�

��
(x � µ)2f(x)dx

µ = E[X]



MULTIPLE RANDOM VARIABLES

Joint probability
Marginal probability
Conditional probability

70



Joint Probability
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Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x−m)(x−m)"] =

∫

x
(x−m)(x−m)"p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x−mx)(y −my)"] = C

=

∫

xy
(x−mx)(y −my)"p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)

Slide from Sam Roweis (MLSS, 2005)



Marginal Probabilities
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Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x−m)(x−m)"] =

∫

x
(x−m)(x−m)"p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x−mx)(y −my)"] = C

=

∫

xy
(x−mx)(y −my)"p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)

Slide from Sam Roweis (MLSS, 2005)



Conditional Probability

73
Slide from Sam Roweis (MLSS, 2005)

Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x−m)(x−m)"] =

∫

x
(x−m)(x−m)"p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x−mx)(y −my)"] = C

=

∫

xy
(x−mx)(y −my)"p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)
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Bayes’ Rule

•Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)
∑

x′ p(y|x′)p(x′)

• This gives us a way of ”reversing”conditional probabilities.

• Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the ”chain rule”:

p(x, y, z, . . .) = p(x)p(y|x)p(z|x, y)p(. . . |x, y, z)

Independence & Conditional Independence

• Two variables are independent iff their joint factors:

p(x, y) = p(x)p(y)
p(x,y)

=
x

p(y)

p(x)

• Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(x, y|z) = p(x|z)p(y|z) ∀z

Entropy

•Measures the amount of ambiguity or uncertainty in a distribution:

H(p) = −
∑

x

p(x) log p(x)

• Expected value of − log p(x) (a function which depends on p(x)!).

•H(p) > 0 unless only one possible outcomein which case H(p) = 0.

•Maximal value when p is uniform.

• Tells you the expected ”cost” if each event costs − log p(event)

Cross Entropy (KL Divergence)

• An assymetric measure of the distancebetween two distributions:

KL[p‖q] =
∑

x

p(x)[log p(x)− log q(x)]

•KL > 0 unless p = q then KL = 0

• Tells you the extra cost if events were generated by p(x) but
instead of charging under p(x) you charged under q(x).

Slide from Sam Roweis (MLSS, 2005)


