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Reminders

« Homework 5: Neural Networks

— Out: Mon, Oct. 11
— Due: Thu, Oct. 21 at 11:59pm

* Homework 6: Learning Theory [ Generative
Models
— Out: Thu, Oct. 21
— Due: Thu, Oct. 28 at 11:59pm

— Same collaboration policy as Homework 3
* Opt-in to homework groups on Piazza



(even more) Reminders

e Midterm Exam 2
— Tue, Nov. 2, 6:30pm - 8:30pm
* Practice for Exam 2

— Practice problems released on course website
* (Tentatively) Out: Thu, Oct. 21

— Mock Exam 2
* (Tentatively) Out: Thu, Oct. 28
* Due Sun, Oct. 31 at 11:59pm



MLE AND MAP



Likelihood Function | OneR.v.

Given N independent, identically distributed (iid) samples
D = {x(), x®) ..., xN1 from a random variable X ...

The likelihood function is
— Case 1: X is discrete with E)robability mass function (pmf) p(x|0)
L(®) = p(xV]6) p(x*|B) ... p(xN[6)
— Case 2: Xis continuous with probability density function (pdf) f(x|0)
L(6) = f(x8) f(x7]6) ... {(x™IB) " The likelihood tells us
how likely one sample is
The log-likelihood function is relative to another
— Case 1: X is discrete with probability mass function (pmf) p(x|9)
40) =log p(xV[0) + ... +log p(xN]|B)
— Case 2: Xis continuous with probability density function (pdf) f(x|0)
40) = log f(x(|B) +... + log f(x(N)|6)



Likelihood Function | TwoR.V.s

Given N iid samples D = {(xM, yM), ..., (xN), y("\))} from a pair
of random variables X, Y

The conditional likelihood function:

— Case 1: Y is discrete with pmf p(y | x, 6)
L(©) = p(y™| x™, 8) ... p(y™| x), ©)

— Case 2: Y is continuous with pdf f(y | x, 6)
L(8) = f(y® | x(, 8) ... f(y™| xN), ©)

The joint likelihood function:
— Case 1: Xand Y are discrete with pmf p(x,y|0)
L(8) = p(x1, y]6) ... p(x), yV]|6)
— Case 2: Xand Y are continuous with pdf f(x,y|0)
L(8) = f(x(, y)IB) ... f(x™), yV]6)



Likelihood Function & TWoR.V.s

* Given N iid samples D = {(x®, yO), ..., (x(N), y(N\))} from a pair
of random variables X, Y

* The joint likelihood function:

Mixed
discrete/
continuous!

— Case 3:Y is discrete with pmf p(y|B) and
X is continuous with pdf f(x|y,a)
L(a, B) = f(xO y, @) p(yV|B) ... F(xM] y™, a) p(y™|B)
— (Case 4: Y is continuous with pdf f(y|B) and
X is discrete with pmf p(x|y,a)

L(a, B) = p(x] ¥, @) f(yV[B) ... p(xM]y™), a) f(y™|B)



MLE
Suppose we have data D = {z()} ¥ |

Principle of Maximum Likelihood Estimation:
Choose the parameters that maX|m|ze the likelihood

of the data.
""" = argmax Hp ()]09)

o 1=1
Maximum Likelihood Estimate (MLE)
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MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability
mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story

x® ~ p(x|6)
Write the log-likelihood

(0) =log p(x("|0) + ... +log p(x(N]0)

Compute partial derivatives, i.e., the gradient
04 0)/06, = ...

04 0)/00,, = ...
Set derivatives equal to zero and solve for ©
040)/08,,=o forallme{y, ..., M}
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that (0) is
concave down at OMLE



MLE of Exponential Distribution

Whiteboard
— Example: MLE of Exponential Distribution



MLE

In-Class Exercise Steps to answer:
Show that the MLE of | 1. Write log-likelihood
parameter ¢ for N of sample
samples drawn from | 5 Compute derivative
Bernoulli(@) is: w.r.t. @
3. Set derivative to
Number of z; = 1 zero and solve for ¢

OMLE = N



Question:

Assume we have N iid
samples x(, x®), ... x(N)
drawn from a Bernoulli(¢).

What is the log-likelihood of
the data ¢ ¢)?

Assume N, = # of (x() = 1)
N, = # of (x() = 0)

MLE

Answer:

- T ommo N m>

l(¢) =N, log(¢) + N, (1 - ’Og(¢))
I(¢) = N,log($) + N, log(1-¢)
(@) = log(¢)™" + (1- log(¢))N°
I(¢) = log($)"" + log(1-)N°

I(¢) = N, log(®) + N, (1-log(¢))
I(¢) =N, log(¢) + N, log(1-¢)
(@) = log ()" + (1- log(¢))"
I(¢) = log($)"° + log(1-§)™

I(¢) = the most likely answer
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MLE

Question:

Assume we have N iid
samples x(, x®), ... x(N)
drawn from a Bernoulli(¢).

What is the derivative of the
log-likelihood 0¢(0)/06?

Assume N, = # of (x() = 1)
N, = # of (x) = 0)

Answer:

A.
B.
C.
D. 340)/38 = log(¢) /N, -

F.

040)[00 = "' - (1- )N
040)/08 =9 /N, - (1-9) /N,
040)/06 =N,/ ¢-N,/(1- )

log(1 ; ¢) / No
046)/00 = N,/ log(¢) -

No/ log(1 : ¢)
04 0)/00 = the derivative of
the most likely answer
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Learning from Data (Frequentist)

Whiteboard
— Example: MLE of Bernoulli



MLE vs. MAP
Suppose we have data D = {z(W} V|

Principle of Maximum Likelihood Estimation:
Choose the parameters that max1m|ze the likelihood

of the data.
M = argmax Hp ()]09)
0 1=1

Maximum Likelihood Estimate (MLE)
Principle of Maximum a posteriori (MAP) Estimation:

Choose the parameters that maximize the posterior

of the parameters given the data.N

oVA = argmax Hp (0|x)

1=1
Maximum a posteriori (MAP) estimate



MLE vs. MAP

Suppose we have data D = {z(W} V|

Principle of Maximum Likel§
Choose the parameters that
of the data.

OMLE _ argq

Important!

Usually the parameters are
continuous, so the prioris a
probability density function

Maximum Likelihood Estimate (MLE)

Principle of Maximum a posteriori (MAP) Estimation:
Choose the parameters that maximize the posterior
of the parameters given the data. Prior

N

™" = argmax Hp(x(i) 10)p(0)

)

1=1

Maximum a posteriori (MAP) estimate




Learning from Data (Bayesian)

Whiteboard
— maximum a posteriori (MAP) estimation



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story

x® ~ p(x|6)
Write the log-likelihood

(0) =log p(x("|0) + ... +log p(x(N]0)

Compute partial derivatives, i.e., the gradient
04 0)/06, = ...

04 0)/00,, = ...
Set derivatives equal to zero and solve for ©
040)/08,,=o forallme{y, ..., M}
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that (0) is
concave down at OMLE



Recipe for Closed-form MAP

Assume data was generated iid from some model, i.e., write
the generative story

0 ~ p(0) and then for all i: x® ~ p(x|0©)
Write the log posterior

tvar(0) = log p(8) + log p(x(V]@) + ... + log p(xN)]6)

Compute partial derivatives, i.e., the gradient
aZMAP(e)/ae1 — e

06, np(0)/00), = ...
Set derivatives to equal zero and solve for ©
04,1p(0)/00,, =0 forallm € {1, ..., M}
OMAP = solution to system of M equations and M variables

Compute the second derivative and check that {0) is
concave down at @MAP



Learning from Data (Bayesian)

Whiteboard
— Example: MAP of Bernoulli—Beta



Takeaways

One view of what ML is trying to accomplish is
function approximation

The principle of maximum likelihood
estimation provides an alternate view of
learning

Synthetic data can help debug ML algorithms

Probability distributions can be used to model
real data that occurs in the world



Learning Objectives

MLE /| MAP

You should be able to...

1.

Recall probability basics, including but not limited to: discrete
and continuous random variables, probability mass functions,
probability density functions, events vs. random variables,
expectation and variance, joint probability distributions,
marginal probabilities, conditional probabilities, independence,
conditional independence

Describe common probability distributions such as the Beta,
Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

State the principle of maximum likelihood estimation and
explain what it tries to accomplish

State the principle of maximum a posteriori estimation and
explain why we use it

Derive the MLE or MAP parameters of a simple model in closed
form



NAIVE BAYES



Naive Bayes

Why are we talking about Naive Bayes?

— It’s just another decision function that fits into
our “big picture” recipe from last time

— But it’s our first example of a Bayesian Network
and provides a clearer picture of probabilistic
learning

— Just like the other Bayes Nets we’ll see, it admits
a closed form solution for MLE and MAP

— So learning is extremely efficient (just counting)



Misinformation Detector

Today’s Goal: To define a generative model of news
articles of two different classes (e.g., real vs. fake news)

Associated Press

Steelers steady themselves behind linebacker T.).
Watt

By WILL GRAVES  October 18, 2021

The Onion

Perfectly Preserved Fourth Watt Brother
Discovered Frozen In Wisconsin Beer
Cooler

PITTSBURGH (AP) — Pittsburgh Steelers linebacker Devin Bush scooped
up the loose ball and amid the chaos, immediately started running in the
wrong direction before finding his bearings.

How very fitting for a team that’s spent its first six weeks trying to figure
things out.

WAUKESHA, WI—Hailing the massive specimen as the greatest NFL discovery

of the century, league scientists announced Tuesday that they have discovered a

perfectly preserved fourth Watt brother frozen in a Wisconsin beer cooler. “This

is a historic find for football that could finally be the crucial missing link 48
between J.J. and T.J.," said lead scientist Robin Grossman, who told reporters



Fake News Detector
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We can pretend the natural process generating these vectors is stochastic...
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Naive Bayes: Model

Whiteboard

— Document = bag-of-words = binary feature
vector

— Generating synthetic "labeled documents"
— Definition of model
— Naive Bayes assumption

— Counting # of parameters with [ without NB
assumption



Model 1: Bernoulli Naive Bayes

Flip weighted coin

If HEADS, flip If TAILS, flip

each red coin each blue coin
Y X X2 X3 X

“" o||1]o0]1 1 .“.

1 o|1]o0 1
1 111 |1 1
0 OO0 |1 1
0 110 |1 0
1 110 |1 0




What’s wrong with the
Naive Bayes Assumption?

The features might not be independent!!

Trump Spends Entire Classified National

* Example 1:
Xd .
Security Briefing Asking About Egyptian

— If a document contains the word e
“Donald”, it’s extremely likely to ¢
contain the word “Trump”

— These are not independent!

* Example 2:

— If the petal width is very high,
the petal length is also likely to
be very high
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Naive Bayes: Learning from Data

Whiteboard
— Data likelihood
— MLE for Naive Bayes

— Example: MLE for Naive Bayes with Two
Features

— MAP for Naive Bayes



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story

x® ~ p(x|6)
Write the log-likelihood

(0) =log p(x("|0) + ... +log p(x(N]0)

Compute partial derivatives, i.e., the gradient
04 0)/06, = ...

04 0)/00,, = ...
Set derivatives equal to zero and solve for ©
040)/08,,=o forallme{y, ..., M}
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that (0) is
concave down at OMLE



