

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

MLE/MAP + Naïve Bayes

Matt Gormley & Henry Chai Lecture 16 Oct. 20, 2021

Reminders

- Homework 5: Neural Networks
 - Out: Mon, Oct. 11
 - Due: Thu, Oct. 21 at 11:59pm
- Homework 6: Learning Theory / Generative Models
 - Out: Thu, Oct. 21
 - Due: Thu, Oct. 28 at 11:59pm
 - Same collaboration policy as Homework 3
 - Opt-in to homework groups on Piazza
 - IMPORTANT: you may only use 2 grace days on Homework 6
 - Last posible moment to submit HW6: Sat, Oct. 30 at 11:59pm

(even more) Reminders

- Midterm Exam 2
 - Tue, Nov. 2, 6:30pm 8:30pm
- Practice for Exam 2
 - Practice problems released on course website
 - (Tentatively) Out: Thu, Oct. 21
 - Mock Exam 2
 - (Tentatively) Out: Thu, Oct. 28
 - Due Sun, Oct. 31 at 11:59pm

MLE AND MAP

Likelihood Function

One R.V.

- Given N independent, identically distributed (iid) samples $D = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$ from a random variable X ...
- The likelihood function is
 - Case 1: X is **discrete** with probability mass function (pmf) $p(x|\theta)$ $L(\theta) = p(x^{(1)}|\theta) p(x^{(2)}|\theta) ... p(x^{(N)}|\theta)$
 - Case 2: X is **continuous** with probability density function (pdf) $f(x|\theta)$

$$L(\theta) = f(x^{(1)}|\theta) f(x^{(2)}|\theta) ... f(x^{(N)}|\theta)$$

The **likelihood** tells us how likely one sample is relative to another

- The log-likelihood function is
 - Case 1: X is **discrete** with probability mass function (pmf) $p(x|\theta)$ $\ell(\theta) = \log p(x^{(1)}|\theta) + ... + \log p(x^{(N)}|\theta)$
 - Case 2: X is **continuous** with probability density function (pdf) $f(x|\theta)$ $\ell(\theta) = \log f(x^{(1)}|\theta) + ... + \log f(x^{(N)}|\theta)$

Two R.V.s

Likelihood Function

- Given N iid samples D = $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ from a pair of random variables X, Y
- The conditional likelihood function:
 - <u>Case 1</u>: Y is **discrete** with pmf $p(y | x, \theta)$ $L(\theta) = p(y^{(1)} | x^{(1)}, \theta) \dots p(y^{(N)} | x^{(N)}, \theta)$
 - Case 2: Y is **continuous** with *pdf* $f(y | x, \theta)$ $L(\theta) = f(y^{(1)} | x^{(1)}, \theta) \dots f(y^{(N)} | x^{(N)}, \theta)$
- The **joint likelihood** function:
 - Case 1: X and Y are **discrete** with pmf $p(x,y|\theta)$ $L(\theta) = p(x^{(1)}, y^{(1)}|\theta) \dots p(x^{(N)}, y^{(N)}|\theta)$
 - Case 2: X and Y are **continuous** with *pdf* $f(x,y|\theta)$ $L(\theta) = f(x^{(1)}, y^{(1)}|\theta) \dots f(x^{(N)}, y^{(N)}|\theta)$

Two R.V.s

Likelihood Function

• Given N iid samples D = $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ from a pair of random variables X, Y

• The **joint likelihood** function:

- Case 1: X and Y are **discrete** with pmf $p(x,y|\theta)$ $L(\theta) = p(x^{(1)}, y^{(1)}|\theta) \dots p(x^{(N)}, y^{(N)}|\theta)$
- Case 2: X and Y are **continuous** with *pdf* $f(x,y|\theta)$ $L(\theta) = f(x^{(1)}, y^{(1)}|\theta) \dots f(x^{(N)}, y^{(N)}|\theta)$
- Case 3: Y is **discrete** with pmf p(y| β) and X is **continuous** with pdf f(x|y, α) L(α , β) = f(x⁽¹⁾| y⁽¹⁾, α) p(y⁽¹⁾| β) ... f(x^(N)| y^(N), α) p(y^(N)| β)
- Case 4: Y is **continuous** with pdf $f(y|\beta)$ and X is **discrete** with pmf $p(x|y,\alpha)$ $L(\alpha, \beta) = p(x^{(1)}|y^{(1)}, \alpha) f(y^{(1)}|\beta) ... p(x^{(N)}|y^{(N)}, \alpha) f(y^{(N)}|\beta)$

MLE

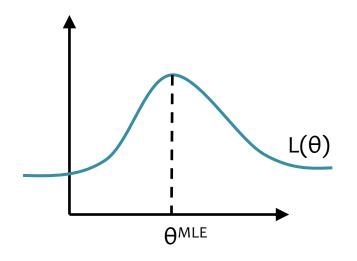
Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$

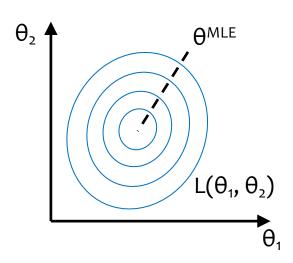
Principle of Maximum Likelihood Estimation:

Choose the parameters that maximize the likelihood of the data. $\frac{N}{N}$

$$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$$

Maximum Likelihood Estimate (MLE)





MLE

What does maximizing likelihood accomplish?

- There is only a finite amount of probability mass (i.e. sum-to-one constraint)
- MLE tries to allocate as much probability mass as possible to the things we have observed...

... at the expense of the things we have not observed

Recipe for Closed-form MLE

 Assume data was generated iid from some model, i.e., write the generative story

$$x^{(i)} \sim p(x|\boldsymbol{\theta})$$

Write the log-likelihood

$$\ell(\boldsymbol{\theta}) = \log p(\mathbf{x}^{(1)}|\boldsymbol{\theta}) + \dots + \log p(\mathbf{x}^{(N)}|\boldsymbol{\theta})$$

3. Compute partial derivatives, i.e., the gradient $\partial \ell(\boldsymbol{\theta})/\partial \theta_1 = \dots$

$$O(O)/OO_1 - ...$$

$$\partial \ell(\boldsymbol{\Theta})/\partial \Theta_{M} = \dots$$

4. Set derivatives equal to zero and solve for $\boldsymbol{\Theta}$

$$\partial \ell(\theta)/\partial \theta_{\rm m} = \text{o for all } m \in \{1, ..., M\}$$

- Θ^{MLE} = solution to system of M equations and M variables
- Compute the second derivative and check that ℓ(θ) is concave down at θ^{MLE}

MLE of Exponential Distribution

Whiteboard

Example: MLE of Exponential Distribution

MLE

In-Class Exercise

Show that the MLE of parameter ϕ for N samples drawn from Bernoulli(ϕ) is:

$$\phi_{MLE} = rac{ ext{Number of } x_i = ext{1}}{N}$$

Steps to answer:

- Write log-likelihood of sample
- 2. Compute derivative w.r.t. φ
- 3. Set derivative to zero and solve for ϕ

MLE

Question:

Assume we have N iid samples $x^{(1)}$, $x^{(2)}$, ..., $x^{(N)}$ drawn from a Bernoulli(ϕ).

What is the **log-likelihood** of the data $\ell(\phi)$?

Assume
$$N_1 = \# \text{ of } (x^{(i)} = 1)$$

 $N_0 = \# \text{ of } (x^{(i)} = 0)$

Answer:

A.
$$I(\phi) = N_1 \log(\phi) + N_0 (1 - \log(\phi))$$

B.
$$I(\phi) = N_1 \log(\phi) + N_0 \log(1-\phi)$$

C.
$$I(\phi) = \log(\phi)^{N_1} + (1 - \log(\phi))^{N_0}$$

D.
$$I(\phi) = \log(\phi)^{N_1} + \log(1-\phi)^{N_0}$$

E.
$$I(\phi) = N_0 \log(\phi) + N_1 (1 - \log(\phi))$$

F.
$$I(\phi) = N_0 \log(\phi) + N_1 \log(1-\phi)$$

G.
$$I(\phi) = \log(\phi)^{No} + (1 - \log(\phi))^{N1}$$

H.
$$I(\phi) = \log(\phi)^{N_0} + \log(1-\phi)^{N_1}$$

I.
$$I(\phi) =$$
the most likely answer

Question 1

Α	
В	
С	
D	
E	
F	
G	
Н	
1	

MLE

Question:

Assume we have N iid samples $x^{(1)}$, $x^{(2)}$, ..., $x^{(N)}$ drawn from a Bernoulli(ϕ).

What is the **derivative** of the log-likelihood $\partial \ell(\theta)/\partial \theta$?

Assume
$$N_1 = \# \text{ of } (x^{(i)} = 1)$$

 $N_0 = \# \text{ of } (x^{(i)} = 0)$

Answer:

A.
$$\partial \ell(\boldsymbol{\theta})/\partial \boldsymbol{\theta} = \boldsymbol{\phi}^{N_1} - (1 - \boldsymbol{\phi})^{N_0}$$

B.
$$\partial \ell(\boldsymbol{\Theta})/\partial \boldsymbol{\Theta} = \boldsymbol{\phi}/N_1 - (1 - \boldsymbol{\phi})/N_0$$

C.
$$\partial \ell(\boldsymbol{\theta})/\partial \theta = N_1/\phi - N_0/(1-\phi)$$

D.
$$\partial \ell(\boldsymbol{\theta})/\partial \theta = \log(\boldsymbol{\phi})/N_1 - \log(1-\boldsymbol{\phi})/N_0$$

E.
$$\partial \ell(\boldsymbol{\theta})/\partial \theta = N_1/\log(\boldsymbol{\phi}) - N_0/\log(1-\boldsymbol{\phi})$$

F. $\partial \ell(\theta)/\partial \theta =$ the derivative of the most likely answer

Question 2

Α	
В	
С	
D	
Е	
F	

Learning from Data (Frequentist)

Whiteboard

Example: MLE of Bernoulli

MLE vs. MAP

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$

Principle of Maximum Likelihood Estimation:

Choose the parameters that maximize the likelihood of the data. $\frac{N}{N}$

$$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$$

Maximum Likelihood Estimate (MLE)

Principle of Maximum a posteriori (MAP) Estimation:

Choose the parameters that maximize the posterior of the parameters given the data.

$$\boldsymbol{\theta}^{\mathsf{MAP}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{n} p(\boldsymbol{\theta}|\mathbf{x}^{(i)})$$

Maximum a posteriori (MAP) estimate

MLE vs. MAP

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$

Principle of Maximum Likeli

Choose the parameters that of the data.

Important!

Usually the parameters are

Maximum Likelihood Estimate (MLE)

Principle of Maximum a posteriori (MAP) Estimation:

Choose the parameters that maximize the posterior of the parameters given the data. Prior

$$\boldsymbol{\theta}^{\mathsf{MAP}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\boldsymbol{\theta}) p(\boldsymbol{\theta})$$

Maximum a posteriori (MAP) estimate

Learning from Data (Bayesian)

Whiteboard

maximum a posteriori (MAP) estimation

Recipe for Closed-form MLE

1. Assume data was generated iid from some model, i.e., write the generative story

$$x^{(i)} \sim p(x|\boldsymbol{\theta})$$

2. Write the log-likelihood

$$\ell(\boldsymbol{\theta}) = \log p(x^{(1)}|\boldsymbol{\theta}) + \dots + \log p(x^{(N)}|\boldsymbol{\theta})$$

3. Compute partial derivatives, i.e., the gradient $\partial \ell(\theta)/\partial \theta_1 = ...$

$$\partial \ell(\theta)/\partial \theta_{M} = \dots$$

- 4. Set derivatives equal to zero and solve for $\boldsymbol{\theta}$ $\partial \boldsymbol{\ell}(\boldsymbol{\theta})/\partial \theta_{m} = 0$ for all $m \in \{1, ..., M\}$ $\boldsymbol{\theta}^{MLE} = \text{solution to system of } M \text{ equations and } M \text{ variables}$
- Compute the second derivative and check that ℓ(θ) is concave down at θ^{MLE}

Recipe for Closed-form MAP

- Assume data was generated iid from some model, i.e., write the generative story
 - $\theta \sim p(\theta)$ and then for all i: $x^{(i)} \sim p(x|\theta)$
- 2. Write the log posterior

$$\ell_{MAP}(\theta) = \log p(\theta) + \log p(x^{(1)}|\theta) + \dots + \log p(x^{(N)}|\theta)$$

3. Compute partial derivatives, i.e., the gradient

$$\partial \ell_{\mathsf{MAP}}(\mathbf{\Theta})/\partial \Theta_1 = \dots$$

 $\partial \ell_{MAP}(\boldsymbol{\Theta})/\partial \theta_{M} = \dots$

- 4. Set derivatives to equal zero and solve for $\boldsymbol{\theta}$
 - $\partial \ell_{MAP}(\boldsymbol{\theta})/\partial \theta_{m} = o \text{ for all } m \in \{1, ..., M\}$
 - Θ^{MAP} = solution to system of M equations and M variables
- 5. Compute the second derivative and check that $\ell(\theta)$ is concave down at θ^{MAP}

Learning from Data (Bayesian)

Whiteboard

Example: MAP of Bernoulli—Beta

Takeaways

- One view of what ML is trying to accomplish is function approximation
- The principle of maximum likelihood estimation provides an alternate view of learning
- Synthetic data can help debug ML algorithms
- Probability distributions can be used to model real data that occurs in the world (don't worry we'll make our distributions more interesting soon!)

Learning Objectives

MLE / MAP

You should be able to...

- 1. Recall probability basics, including but not limited to: discrete and continuous random variables, probability mass functions, probability density functions, events vs. random variables, expectation and variance, joint probability distributions, marginal probabilities, conditional probabilities, independence, conditional independence
- 2. Describe common probability distributions such as the Beta, Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.
- State the principle of maximum likelihood estimation and explain what it tries to accomplish
- 4. State the principle of maximum a posteriori estimation and explain why we use it
- 5. Derive the MLE or MAP parameters of a simple model in closed form

NAÏVE BAYES

Naïve Bayes

- Why are we talking about Naïve Bayes?
 - It's just another decision function that fits into our "big picture" recipe from last time
 - But it's our first example of a Bayesian Network and provides a clearer picture of probabilistic learning
 - Just like the other Bayes Nets we'll see, it admits
 a closed form solution for MLE and MAP
 - So learning is extremely efficient (just counting)

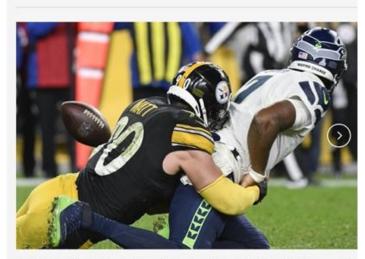
Misinformation Detector

Today's Goal: To define a generative model of news articles of two different classes (e.g., real vs. fake news)

Associated Press

Steelers steady themselves behind linebacker T.J. Watt

By WILL GRAVES October 18, 2021



PITTSBURGH (AP) — Pittsburgh Steelers linebacker Devin Bush scooped up the loose ball and amid the chaos, immediately started running in the wrong direction before finding his bearings.

How very fitting for a team that's spent its first six weeks trying to figure things out.

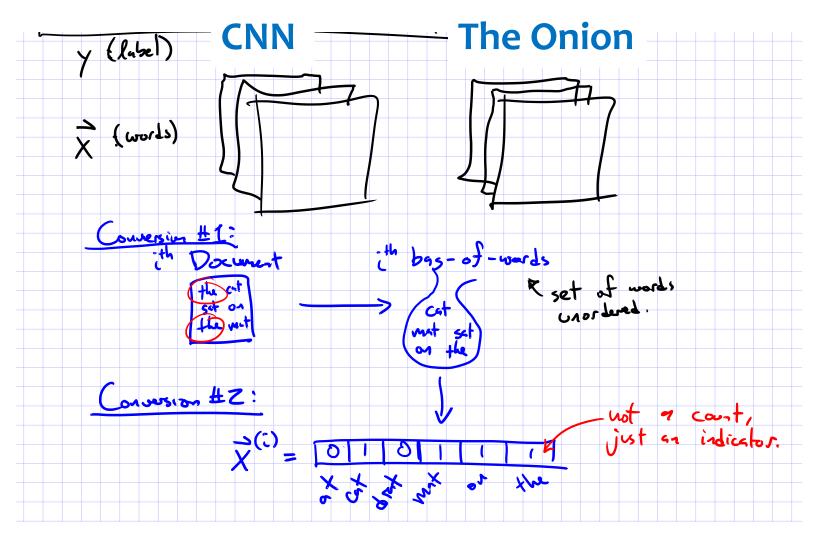
The Onion

Perfectly Preserved Fourth Watt Brother Discovered Frozen In Wisconsin Beer Cooler

Today 12:50PM | Alerts

WAUKESHA, WI—Hailing the massive specimen as the greatest NFL discovery of the century, league scientists announced Tuesday that they have discovered a perfectly preserved fourth Watt brother frozen in a Wisconsin beer cooler. "This is a historic find for football that could finally be the crucial missing link between J.J. and T.J.," said lead scientist Robin Grossman, who told reporters

Fake News Detector



We can pretend the natural process generating these vectors is stochastic...

Naive Bayes: Model

Whiteboard

- Document → bag-of-words → binary feature vector
- Generating synthetic "labeled documents"
- Definition of model
- Naive Bayes assumption
- Counting # of parameters with / without NB assumption

Model 1: Bernoulli Naïve Bayes

Flip weighted coin

 x_2

0

1

0

 χ_3

1

0

 x_M

1

1

If HEADS, flip each red coin

1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 Each red coin 1 1 0 1 0

y

0

1

If TAILS, flip each blue coin

We can **generate** data in this fashion. Though in practice we never would since our data is given.

Instead, this provides an explanation of how the data was generated (albeit a terrible one).

corresponds to an x_m

What's wrong with the Naïve Bayes Assumption?

The features might not be independent!!

- Example 1:
 - If a document contains the word "Donald", it's extremely likely to contain the word "Trump"
 - These are not independent!

Example 2:

If the petal width is very high,
 the petal length is also likely to
 be very high

Naïve Bayes: Learning from Data

Whiteboard

- Data likelihood
- MLE for Naive Bayes
- Example: MLE for Naïve Bayes with Two Features
- MAP for Naive Bayes

Recipe for Closed-form MLE

 Assume data was generated iid from some model, i.e., write the generative story

$$x^{(i)} \sim p(x|\boldsymbol{\theta})$$

2. Write the log-likelihood

$$\ell(\boldsymbol{\theta}) = \log p(x^{(1)}|\boldsymbol{\theta}) + \dots + \log p(x^{(N)}|\boldsymbol{\theta})$$

3. Compute partial derivatives, i.e., the gradient $\partial \ell(\boldsymbol{\theta})/\partial \theta_1 = \dots$

$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_{\mathsf{M}}} = \dots$$

- 4. Set derivatives equal to zero and solve for Θ $\partial \ell(\Theta)/\partial \Theta_{m} = 0$ for all $m \in \{1, ..., M\}$ $\Theta^{MLE} = \text{solution to system of } M \text{ equations and } M \text{ variables}$
- 5. Compute the second derivative and check that $\ell(\theta)$ is concave down at θ^{MLE}